9. ポーラスレジンサンドを用いた目地充填工法の開発と施工例

Development of joint filling method using porous resin sand and construction example

松井 亮夫*1

要旨

ひび割れ誘発目地の充填材として新たに開発した,ポーラスレジンサンドを用いた材料特性試験と模型実験を行った。その結果,コンクリート面の目地内に施工された本充填材は,コンクリートとの接着性,目地露出面の陥没 抵抗性,ひび割れ分散性において,一般的なモルタルやシーリング材よりも優位な効果を有することが分かった。 また,実建物での適用事例においても,不具合発生を未然に防止できることを確認した。

キーワード: RC 造/クロス直貼り仕上げ/誘発目地/充填材

1. はじめに

本工法は, 珪砂とファイバー樹脂を混合して製造し た材料(ポーラスレジンサンド, Porous Resin Sand, 以 下 PRS と称す)をコンクリート表面に設けた目地内に 充填(写真 1-1)することで,目地形状の変形にあわせ, PRS の持つポーラス機構(空隙:写真 1-2)により, PRS の内部に加わる圧縮力や引張力を吸収する。とくに引 張時においては, ひび割れそのものが分散するため, 日々の目地幅が増減するなどの繰り返し挙動に伴い発 生する PRS 内部および表面のひび割れ幅を,一定値以 下に制御できる。よって,この躯体表面に直貼りクロ ス仕上げ等を施した後も,仕上げ面の亀裂を防止する ことを可能とする工法(特許 No.7025196)である。本 報では,工法開発にあたって種々行った実験のうち, PRS の材料特性試験と模型実験について詳細に述べ, 実建物における施工例についても紹介する。

1.1 工法開発の経緯

建物のクロス直貼りの仕上げ層に亀裂等の不具合が 発生すると、美観上および耐久性上の問題に発展する ことがあり、使用者のみならず、事業主・設計者や施工 者において最も防止したい現象の一つである。近年、 CCB工法^{[1][2][3]}(図1-1)による収縮ひび割れ誘導精度 が向上し、90%以上の高い確率で目地内に誘導(写真 1-3)できるようになった。しかし、RC造やSRC造の 建物において、コンクリート躯体表面にクロス直貼り による仕上げの場合、コンクリート躯体そのもののひ び割れを制御するために有効な、躯体表面に目地を設 け、目地内にひび割れを誘導して制御する方法は、主 として意匠上の目地を見せたくないとう事業主要求に 対し,目地内に充填する有効な材料がないため,積極 的に実施されてこなかった現状がある。

試験項目	形状	数量	平均值
圧縮強度(N/mm ²)	¢ 50×100mm	3	12.6
静弹性係数(kN/mm ²)	¢100×200mm	3	5.53
曲げ強さ(N/mm ²)	\Box 40×40×160mm	3	8.01
引張強度(N/mm ²)	¢ 50×100mm	3	2.69
接着強さ(N/mm ²)	\Box 40×40×10mm	5	0.3
長さ変化率(収縮,×10 ⁻⁶)	$\Box 40 \times 40 \times 160 \text{mm}$	3	126 (182 日)
質量減少率(%)	$\Box 40 \times 40 \times 160 \text{mm}$	3	0.2 (182 日)
線膨張率 (×10-6 K-1)	¢ 50×100mm	1	18.4

*1:技術研究所調査研究グループ 博士(工学)

これまでの代表的な目地充填材である、モルタルを 充填した場合は、目地の挙動を拘束することとなり、 コンクリートとモルタルの接着界面に肌分れ(写真1-4) が生じ、クロスや塗装仕上げ表面にその亀裂が露見 する。一方,伸縮性を重視してシーリングを充填した 場合は、体積減少によって躯体表面よりも凹み(写真 1-5)が進行してクロス表面にしわが寄ることや、指で 押さえると窪む等の現象が発生する。したがって、目 地を充填した仕上げ表面の亀裂, しわ, 窪みを防止す るためには、目地形状の変化に対し、一定のひび割れ 分散性, 接着力, 圧縮強度, 体積減少が小さい材料で充 填することが重要となる。表 1-1 に, PRS の物性試験 結果を示す。

1.2 工法の開発目的

本工法では、躯体コンクリートに設けられた目地に 珪砂とファイバー樹脂を混合して製造した PRS によっ てポーラス機構が形成され,コンクリートと PRS の接 着界面に亀裂は生じず,仕上げ面に亀裂,しわ,窪みが 生じない状態が構築できる(図1-2)。このように,壁 等のコンクリート躯体表面に設けた目地への充填材料 による不具合防止技術を提供することが,本工法の開 発目的である。

1.3 使用材料

現場での混合時のばらつきをなくすため、使用材料 はすべてプレパック包装している(写真 1-6)。

- (1) PRS 樹脂【主剤(繊維入り):硬化剤=3:1】 繊維化合成樹脂(エポキシ系樹脂)
- (2) プライマー【主剤:硬化剤=2:1】 繊維化合成樹脂(エポキシ系樹脂)
- (3) 珪砂 (1000℃で焼成)

珪砂

リバースサンドNo.5(東海リテック株式会社)

2. PRSの材料特性試験

PRS は変形追従の良さと、ひび割れ分散性、窪み変 形のし難さ、界面の接着力などが期待され、目地の充 填材料として適していると予測された。しかし, PRS の 目地部における各性能を定量的に評価するためにはデ ータが十分でなかった。そこで、PRS の構造的な材料 特性を検証し、目地部での PRS の性能について定量的 に評価できる資料を得ることにした。

2.1 PRSの接着性能試験

2.1.1 試験概要

PRSの接着性能を把握するため、PRSと鋼板とを接着さ せた試験体の接着面に対し、鉛直方向の引張力を加える 引張試験を行った。試験パラメータは、PRSの接着面間の 距離は 3mm,6mm,9mm,18mm,24mm とした。

引張試験体は、チャッキング用ネジ棒をねじ込むナッ トを溶接した鋼板(43×43×13mm)にPRSを挟み込んで2面 接着した形状とした。ひずみゲージは小型(貼付けベース 長さ3mm) のものとし、PRS の厚み方向に隙間なく1列に 貼り付けた。貼り付ける面は、1組の相対するPRSの側面 とした。チャッキング用ネジ棒には変位測定用のボルト を取り付け, πゲージを用いてボルト間の変位を計測した。 引張試験体の形状を図2-1に示す。

表 2-1 に引張試験体リストを示す。パラメータは, PRS の厚さおよび載荷方法とした。厚さは数値 mm と し、載荷方法は単調(M)と繰返し(C)とした。

2.1.2 試験体製作

PRS は、骨材である珪砂 4 号と繊維入りエポキシ系 樹脂(主剤,硬化剤)とを混合した材料である。 プライ マーは繊維入りエポキシ樹脂と同一のものとした。試 験体製作状況を写真 2-1 に示す。

図 2-1 引張試験体の形状

写真 2-1 試験体製作状況

主副

写真 1-6 使用材料のプレパック包装

硬化剂

W09C-1

W24C-1

厚さ

(mm)

3

6

9

18

24

9

24

載荷方法

単 調

繰返し

表 2-1 引張試験体リスト

用途

壁用

2.1.3 試験方法

PRSの圧縮試験は、JISB7766の6に規定する1等級 以上の圧縮試験機を用いて行った。写真2-2に圧縮試 験装置を示す。PRSの引張試験は、油圧チャッキング 装置を備えた油圧サーボ式材料強度試験機(島津製作 所、サーボパルサー)を用いて行った。引張試験は、 0.05mm当たり300sの載荷速度での単調引張試験と、 壁体の温度ひずみを模した載荷速度(0.05mm/13800s) の1.5 サイクルの繰返し引張試験を行った。繰返し載 荷サイクルを図2-2、引張試験装置を写真2-3に示す。

2.1.4 試験結果

(1) 圧縮試験結果

圧縮試験の結果を表 2-2 に示す。PRS の圧縮強度は 17.49N/mm²,弾性係数は 9260N/mm²であった。

(2) 引張試験結果

引張試験の結果を表2-3に示す。実験時の材齢は2~3か 月であった。破壊モードは、概ね鋼板ジグとの界面付近で の破壊(写真2-4)となったので、最大応力はPRSと鋼板 の接着力の最大応力とし、最大応力は1.60~2.88 N/mm²で あった。

2.1.5 考察

表2-4に,汎用される2成分形ポリウレタン系シール材 の引張接着性能を計る試験での最大引張応力を示す。接 着対象となる材料はアルミニウム,モルタルである。各製 品の最大引張応力は,アルミニウムとモルタルでは同程 度の強度であった。このことから,金属とセメント系材料 に対するシール材の接着力は変わらないと考えられた。 本実験では,PRS材と鋼板との接着力を確かめたが,セメ ント系材料との接着力も同等と推察される。

図2-3に、最大引張応力と最大変位の関係を示す。2成 分形ポリウレタン系シール材の最大引張強度の値は0.33 ~0.87 N/mm²であった。また、モルタルは0.91~1.15 N/mm²であった。同様に、PRSは1.60~2.88 N/mm²であっ た。これにより、PRSの接着力は、2成分形ポリウレタン 系シール材やモルタルを上回ると考えられる。

2.1.6 まとめ

PRSの接着特性を以下に示す。

- 接着面間の距離に関わらず,接着応力は1.60~
 2.88N/mm²であり,1N/mm²以上であった。
- 2) 引張強度は、圧縮強度の1/10程度となった。
- 一定の変位まで剛性が低いが、その変位を超えると 剛性が急に上昇し破壊に至った。

表 2-2 圧縮試験結果

表 2-4 2 成分形ポリウレタン系シール材の引張接着性能^{[7][8][9][10][11]}

試験体名	部位	直径 × 高さ (mm)	最大荷重 (kN)	最大応力 (N/mm ²)	圧縮強度 (N/mm ²)	最大荷重時 ひずみ (μ)	最大荷重時 平均ひずみ (μ)	各弾性係数 (N/mm ²)	弾性係数 (N/mm ²)	휈묘	タイプ JIS A 5758の種類	体積損失 (%)	最大引張応力 (対アルミ 養生後23°C)	最大引張応力 (対モルタル 養生後23°C)
14/01			22.41	16.51		-1027	1150	14261					(N/mm*)	(N/mm*)
WCI			32.41	10.51		-1272	-1150	14301	Í	A社製	F-25LM-8020(PU-2)	5.7	0.36	0.37
						-3273				B社製	F-25LM-8020(PU-2)	6.4	0.44	0.33
WC2	壁	50×100	34.63	17.64	17.49	-1398	-2336	/550	9260	C社製	F-25LM-8020(PU-2)	6.0	0.87	-
					1	-4838				D社製	F-25LM-8020(PU-2)	4.1	0.50	0.50
WC3			35.96	18.31		1402	-3120	5870	i i	ロシー海川	E 251 M 9020(D11 2)	7.6	_	0.55

	致 2 0 月 波动派师本									
試験体名	用 途	厚さ (mm)	載荷方法	破壊モード	最大荷重 (kN)	最大荷重時 変位(mm)	最大荷重時 ひずみ(µ)	最大応力 (N/mm ²)	ľ	
W03M-1		3		材料内	2.95	0.227	-286	1.60	ł	
									ļ	
W03M-2		3		材料内	4.44	0.244	179	2.40		
W06M-1		6		材料内	5.32	0.160	190	2.88		
W06M-2	Pris III	6	単調	材料内	3.91	0.196	137	2.11		
W06M-3	堂 用	6		上面	4.60	0.379	-156	2.49		
W09M-1	~	9		材料内	4.24	0.181	170	2.29		
W18M-2		18		材料内	3.35	0.261	86	1.81		
W24M-1		24		材料内	4.29	0.173	138	2.32		
W09C-1		9	编示	材料内	4.64	0.159	-51	2.51	-	
W24C-1		24	10KUC L	材料内	5.11	0.407	189	2.76	与	

表 2-3 引張試験結果

2.2 PRS目地露出面の陥没抵抗性能試験

2.2.1 試験概要

PRSの陥没抵抗性能を把握するために圧縮試験を行い, 縦ひずみと横ひずみを計測して,その数値からポアソン 比を算出し,PRSが壁目地内で受けるひずみに対して直交 する方向のひずみを推定した。ポアソン比が低いほど窪 み変形がし難く,目地部での不陸が生じ難くなると考え られた。試験パラメータは,PRSの圧密レベルとした。 圧縮試験体は,直径 50mm 高さ 100mm の円筒形とし, 縦ひずみ計測用ゲージ2枚,横ひずみ計測用1枚の計 3か所にひずみゲージ(PL-60-11)を貼り付けた。圧縮試 験体を図 2-4 に示す。

図 2-4 圧縮試験体

写真 2-5 打設状況

2.2.2 試験体製作

PRS は、骨材である珪砂 4 号と繊維入りエポキシ樹 脂(主剤,硬化剤)とを混合した材料である。試験体の 圧密レベルは、型枠に打設する材料の重量によって差 をつけた。型枠に材料を自然落下で打設したものを圧 密レベル1試験体とした。圧密レベル1試験体の重量 に対して、同じサイズの型枠に1.05倍の重量の材料を 打設したものを圧密レベル2試験体とした。同じく、 1.10倍の重量の材料を打設したものを圧密レベル3試 験体とした。各々の圧密レベル試験体は3体ずつ製作 した。写真 2-5 に打設状況を示す。

2.2.3 試験方法

PRSの圧縮試験は,JISB7766の6に規定する1等級以上の 圧縮試験機を用いて行った。

2.2.4 試験結果

E縮試験から得られた圧縮応力ー縦 ひずみ・横ひずみ関係の例を図2-5に示 す。圧縮試験結果を表2-5に示す。ただ し、圧縮レベル3試験体は参考試験体 ととらえていたため、圧縮応力ー縦ひ ずみ関係のみを計測した。実験時の材 齢は12日であった。

表 2-5 圧縮試験結果

試験体名	部位	直径 × 高さ (mm)	最大荷重 ^(kN)	最大応力 (N/mm ²)	圧縮強度 (N/mm ²)	最大荷重時 圧縮ひずみ (µ)	彈性係数 (N/mm ²)	平均弾性係数 (N/mm ²)	ポアソン比 (2000µ時)	平均ポアソン比 (2000 µ時)
W1C1			4.34	2.21		10455	211		0.107	
W1C2			3.45	1.76	1.99	15260	115	181	0.073	0.087
W1C3			3.91	1.99		8045	248		0.080	
W2C1			4.86	2.48		11525	215		0.053	
W2C2	壁	50 × 100	5.23	2.66	2.84	5150	517	247	0.119	0.064
W2C3			6.62	3.37		12115	278		0.021	
W3C1			7.20	3.67		10055	365		-	-
W3C2			7.82	3.98	3.88	11555	345	383	—	-
W3C3			7.81	3.98		9045	440		—	-

2.2.5 考察

表2-6に,建築用2成分形ポリウレタン系シーリング材 とPRSの体積損失を示す。PRSの体積損失は,試験で得た ポアソン比と長さ変化試験の目標値を用いて算出した。

表 2-6 体積損失の比較^{[7][8][9][10][11]}

朱川 口	タイプ	体積損失
	JIS A 5758の種類	(%)
A社製	F-25LM-8020(PU-2)	5.7
B社製	F-25LM-8020(PU-2)	6.4
C社製	F-25LM-8020(PU-2)	6.0
D社製	F-25LM-8020(PU-2)	4.1
E社製	F-25LM-8020(PU-2)	7.6
PRS		
ポアソン比:0.064	AOIトーマス株式会社	0.39
長さ変化試験目標値:400 μ		
		*

表2-6より,調査した建築用2成分形ポリウレタン系シ ーリング材の材料自体の乾燥による収縮の体積損失平均 値は5.96%となり,同様にPRSは0.39%となる。これらの 値を用いて,底辺×高さ×上辺が20mm×20mm×30mmの両 ころびの目地が三面接着された時,目地上面の沈み込み を計算して比較した。なお,計算方法が複雑になるため, 単純に高さの平均変位を算出した。PRSに関しては,目地 高さを3,000mmとして,この長さの目地材が高さ方向に収 縮した時の目地深さ方向の変位を計算した。

図2-6に、乾燥による目地陥没量(計算値)を示す。建 築用2成分形ポリウレタン系シーリング材は-1.14mm, 同様にPRSは-0.078mmとなった。

材料自体の乾燥収縮に起因した体積損失による目地上 面の沈み込み以外に,目地幅が変位した時の目地上面の 沈み込みも考えられた。そこで,目地の断面形状を版要素 で分割した目地断面モデルに対し,強制的にほぼ最大と 考えられる目地内ひび割れ幅の0.4mm変位を与えて,目 地の沈み込みを求めた。このFEM解析には,汎用解析ソ フトmidas iGenを用いた。

解析条件を表2-7に,解析結果を図2-7に示す。解析パタ ーン 1,2,3,4 それぞれの目地沈み込み変位の最大値は, -0.084mm,-0.044mm,-0.037mm,-0.055mmとなった。

表 2-7 強制変位による目地沈み込み解析条件

解析パターン	材料	弾性係数 (N/mm ²)	ボアソン比	0.4mm幅クラック位置
1 2	建築用シーリング材	0.081	0.45	中央 目地底縁
3 4	PRS	247	0.064	中央 目地底縁

強制変位による沈み込み変位は、材料自体の乾燥に よる沈み込み変位の 1/10 以下であった。そのため、 見かけ上の沈み込み変位は、建築用2成分形ポリウレ タン系シーリング材の変位は PRS の変位と比較する と著しく大きいと考えられる。PRS の沈み込み変位の 最大値は、乾燥時の変位-0.078mm と強制変位による 沈み込み変位の和となる。強制変位による沈み込み変 位は、0.4mm の強制変位でひび割れ位置の違いで -0.037mm と-0.055mm となったが、いずれの時点でも 目地断面内にひび割れが発生することで応力の再配分 が生じるため、この変位は大幅に小さくなり、0.2mm 強制変位時相当の沈み込み変位は-0.02mm 程度になる と考えられ、沈み込み変位の最大値は-0.1mm 以下と 考えられる。このことより、PRS の陥没抵抗性により 顕著な凹は生じないと考えられる。

2.2.6 まとめ

圧密レベル 1~3 の PRS の圧縮性能、陥没抵抗性能 を以下に示す。

- 1) 圧縮強度は、1.99~3.88N/mm²であった。
- 2) 圧縮強度時の圧縮ひずみは 10000µ を超えた。
- 3) 弾性係数は 181~383N/mm²程度であった。
- 4) 圧縮ひずみが 2000µ 付近の時, 陥没抵抗性(ポア ソン比)は 0.064~0.087 程度であった。
 (参考:コンクリート 0.2, 鋼材 0.3, ゴム 0.5)
- 5) 圧密レベルが高くなると圧縮強度が高くなった。
- 6) PRS 目地露出面の窪み変形は 0.1mm 以下であるため、クロス貼りに影響しない。
- 2.3 PRSのひび割れ分散性能試験および応力解析

2.3.1 試験概要

PRS のひび割れ分散性能を検証する基本データを取 得するため、材料の直接引張試験を行った。試験では 引張ひずみを計測し、応力-ひずみ関係を把握した。 試験パラメータは PRS の圧密レベルとした。

引張試験体はブリケット型とし、くびれ部分に特殊 ジグを設置できるものとした。引張断面は1辺が 1inchの正方形で、断面積は645mm²であった。引張 ひずみ計測用に、ひずみゲージ(PFL-30-11)を試験体の 表裏両面に貼り付けた。試験体の形状を図2-8に示 す。また、表2-8に試験体リストを示す。

王密レベル	載荷履歴	数量(体)
	単調引張	3
1 (1.00)	繰返し引張	3
	予備	3
	単調引張	3
2 (1.05)	繰返し引張	3
	予備	3
	単調引張	3
3 (1.10)	繰返し引張	3
	予備	3

2.3.2 試験体製作

PRS は、骨材である珪砂 4 号と繊維入りエポキシ樹 脂(主剤,硬化剤)とを混合した材料である。試験体の 圧密レベルは、型枠に打設する材料の重量によって差 をつけた。型枠に材料を自然落下で打設したものを圧 密レベル1とし、圧密レベル1の試験体の重量に対し、 同じサイズの型枠に1.05 倍の重量の材料を打設したも のを圧密レベル2 試験体、同じく、1.10 倍の重量の材 料を打設したものを圧密レベル3 試験体とした。各々 の圧密レベル試験体は3 体ずつ製作した。図 2-9 に打 設状況を示す。

図 2-10 載荷装置

2.3.3 試験方法

PRS の引張試験は、油圧チャッキング装置を備えた 油圧サーボ式材料強度試験機(島津製作所,サーボパ ルサー)を用いた。図 2-10 に載荷装置を示す。

2.3.4 試験結果

引張試験から得られた引張応力ー引張ひずみ関係を 図 2-11 に示す。引張強度では圧密レベル1, 2では 大きな差は無かった。引張強度時ひずみは1000μ前後 であった。引張強度と試験体重量との関係を図 2-12 に示しており、正の相関関係が見られた。

図 2-13 にブリケット試験体の比重および圧密比を 示す。実施工における適切な締固め度合いは,目地形 状による圧密比の目標値として,比重で1.00~1.07 倍、圧密比で1.08~1.16であることが分かった。 2.3.5 考察

鉄筋コンクリート壁の誘発目地部には、目地埋め材 料を充填する。充填するタイミングは施工工程によっ て変わるが、一般的にはコンクリート打設数か月後と なる。この壁に発生する収縮ひび割れのほとんどは, 打設後のこの期間に発生し終わる。しかし、希にこの 期間を経過した後にひび割れが誘発される場合があ る。本解析ではこの状況を考慮して、目地底にひび割 れ発生後、壁の収縮によって生じるひび割れ幅の変位 の最大値 0.02mm と、初期ひび割れ幅の想定最大値 0.4mm^{[14][15][16]}を強制変位のパラメータとした。ま た、目地底の初期ひび割れ発生位置を目地中央および 目地底縁と想定し、位置パラメータとした。一連の材 料実験および既往の文献から得られた建築用シーリン グ材、PRS、モルタルの弾性係数、ポアソン比、界面 の各剛性を反映させて、代表的な目地断面(辺×高さ× 上辺が 20mm×20mm×30mm) について, 汎用解析ソフ ト midas iGen を用いて応力解析を行った。材料は完全 弾性体とした。解析パターンの諸元を表 2-9 に示す。

表 2-10 に解析で得られた2面の目地側面の界面開 きを示す。PRS の界面の開きは、モルタルの界面の開 きの概ね1/2以下であった。PRSの界面開きは 0.02mmの強制変位で 0.002mm~0.006mm であった。 同様に 0.4mm の強制変位では 0.061mm~0.121mm で あった。

表 2-	9 解析	パタ-	ーンの	諸元
------	------	-----	-----	----

表 2-10

1.2										界面	開き
	レベル1レベル2レベル3 ()内赤文字は圧密比	解析パターン	材 料	弾性係数 (N/mm ²)	ポアソン比	目地側面 引張剛性 (N/mm)	目地底面 せん断剛性 (N/mm)	強制変位幅 (mm)	想定クラック位置	界面開き1 (mm)	界面開き2 (mm)
1.1		1 2	建築用シーリング材	0.081	0.45				中 央 目地底縁	0	0
(g/cm ³)	レベル3平均 1.07(1.16)	3 4	PRS	619	0.064			0.02	中 央 目地底縁	0.005	0.005
圧衝		5 6	モルタル	$2.06 imes 10^4$	0.2				 中 央 目地底縁 	0.01 0.007	0.01 0.012
0.9	レベル1平均 0.92(1.0)	7 8	PRS	619	0.064	70.4	298	0.2	 中 央 目地底縁 	0.051	0.049
		9 10	建築用シーリング材	0.081	0.45				 中央 目地底縁 	0 0	0 0
0.8	1 2 3 4 5 6	11 12	PRS	619	0.064			0.4	中 央 目地底縁	0.097 0.061	0.097 0.121
図 2-	⁻¹³ ブリケット試験体の比重と圧密比	13 14	モルタル	2.06×10^{4}	0.2				 中 央 目地底縁 	0.194 0.143	0.194 0.244

図 2-14 応力解析結果

図 2-14 に, 強制変位を与えた目地断面の水平方向 の PRS の応力解析結果を示す。PRS の 0.02mm の強制 変位時では, 想定ひび割れ点(中央)では引張強度を上 回る応力が発生した。また, 上面両端部付近に応力が 高くなる領域が発生した。これは 0.4mm の強制変位 時でも同様の応力分布傾向が見られた。ひび割れは応 力の高い領域を結ぶラインでも発生すると考えられ, 目地中央と目地両端付近に3本のひび割れが発生する PRS 目地のひび割れ分散現象を裏付けるものと考えら れた。本傾向は 0.2mm 強制変位時も同じであった。

2.3.6 まとめ

PRS の引張試験と応力解析の結果を以下に示す。

- 1) PRS は締固め度によって引張強度が変化した。
- 実施工における適切な締固め度合いは、目地形状 による圧密比の目標値として、比重で1.00~1.07 倍、圧密比で1.08~1.16であることが分かった。
- 3) PRS の引張強度は 0.6~0.9N/mm² であった。
- 4) 従来のモルタルは目地界面の開きが著しかった。
- 5) 応力解析結果から, PRS のひび割れ分散性能の裏 付けが得られた。目地ひび割れ 0.02mm 変位では, PRS にひび割れが生じないことが分かった。目地ひ び割れ 0.2mm 変位では, PRS に複数のひび割れが 生じることが予測され,目地ひび割れ 0.4mm 変位 では, PRS には目地ひび割れを起点に著しいひび割 れが生じることが予測された。上記により,目地幅 の変化が 0.4mm まではひび割れ分散性能を有する ことが予測された。

3. PRS の模型実験

本実験では、コンクリート壁に設けられたひび割れ 誘発目地部分に直貼りされたクロス仕上げを対象とし た。今回、目地部分に PRS(骨材珪砂4号と繊維入り エポキシ樹脂を混合した材料)を充填した試験体を製 作し,目地底に生じたひび割れによる日々の挙動を模 擬した繰り返し変位に対する模型実験を行った。

3.1 クロス直貼り仕上げ繰り返し変位試験

3.1.1 試験概要

図 3-1 に試験体概要、図 3-2 に目地部断面を示す。 試験体コンクリートの一方のひび割れ面には鋼板が仕 込まれている。また,引張方向の載荷のみでなく,圧 縮方向の載荷も実施したいと考え,PRS 施工前にひび 割れ面に厚さ 0.3mm のナフロンテープを挿入し,試 験時にナフロンテープを引き抜くことでひび割れ面に 隙間を設けるように考慮していたが,本試験体では引 き抜くことができなかった。試験体両面の目地部分に PRS を充填した後,乾燥養生を行い,試験体両面に不 陸調整のパテ塗り,クロス直貼り仕上げを行った。

3.1.2 試験方法

図 3-3 に試験体設置状況を示す。試験は、精密万能 試験機(インストロン)を使用し,繰返し変位に対する 確認試験を行った。測定項目は、コンクリート側面の ひび割れ幅(パイ型変位計により前面2箇所,背面2 箇所を計測), インストロンクロスヘッド変位, 荷重, 壁クロスの破れ,変色・変形(影)とした。コンクリー ト側面のひび割れ幅,インストロンクロスヘッド変位, 荷重は、マルチ入力データ収集システム NR-600 (キー エンス社製)により計測した。壁クロスの破れ、変色・ 変形(影)は目視により観察・記録した。

載荷スケジュールは変位0をゼロ点とし、インスト ロンクロスヘッド変位 ±0.1mm の正負繰返し載荷とし た。載荷は変位制御で行い、0.2mm/秒(0.5Hz)の速 度とした。目地底に生じたひび割れは、1日に1回挙 動するため、10年間繰り返し相当にあたる3650回を 2回に分けて試験した。3650回の繰返し試験終了後, 載荷速度を 0.02mm/分に速度を落とし、再度 3 回の繰 返し試験を行った。これは時間を掛けて徐々に変形が 発生する PRS の性質を確認するため、載荷速度の遅 い試験を実施した。その後、クロスが破断するまで単 調漸増載荷を行った。

載荷スケジュールを決めるにあたり、実建物の目地 部挙動の計測値を参考とした。図 3-4 に変位計設置状 況,図3-5に目地部の挙動計測結果(標準期)を示 す。標準期における1日最大変位は、PRS 有の引張側 最大で 0.008mm (PRS 無:最大 0.01mm) であった。

全体傾向としては,充填後約1か月は充填材の有無 による変位に大きな違いは見られなかったが、それ以 降, PRS 有は変位0付近でほぼ変化がなく, PRS 無 は変位 0.01mm 付近で上下に推移していた。以上のこ とから、戸境壁目地部へ PRS を充填することで、 日々の建物の膨張収縮によるひび割れ挙動を吸収でき ると推察された。また、過去の屋外冬季における1日 最大変位の計測結果は、PRS 有の引張側最大で 0.04mm であった。

3.1.3 試験結果

繰返し試験開始前において、 クロスパテにもひび割 れ等は無い状態であった。繰返し試験を 1825 回完了 した時点において, 試験体にひび割れ等の異常は見ら れなかった。その後、繰返し試験 3650 回完了時にお いても、試験体の PRS、クロスパテ、クロス表面の いずれにおいても、ひび割れ等の異常はなく、クロス 表面のしわも見られなかった(写真 3-1)。

次に載荷速度を落とし、3回の繰り返し試験を行っ たが、ひび割れ等の異常は見られなかった。載荷速度 の遅い試験をすることで、PRS が程度の大きな変位 に対しても追従できることが確認された。繰返し試験 終了後、クロス表面にひび割れ等が見られなかったた め、限界ひび割れ幅を把握するため、単調漸増載荷を 行い、クロスが破断するまでの載荷を行った。図 3-6 に試験機荷重-パイゲージ1変位関係を示す。

図 3-4 変位計設置状況

表面パイゲージ1の0.2mm時に、目地中央、目地 中央のやや上部および目地下部に、3本のひび割れが 分散して発生した(図 3-7 左)。なお、クロス表面に 伸びや亀裂は見られなかった。単調漸増載荷を続ける と、パイゲージ1側のひび割れは、0.4mmを超えると ひび割れ3本のうち目地中央のひび割れ幅が拡大し, ひび割れ幅が 0.5mm 時に、ひび割れは目地中央の1 本に集約した(図 3-7 右)。表面パイゲージ2の 0.25mm時に, 目地中央のやや上部, 目地中央のやや 下部および目地下部に、3本のひび割れが分散して発 生した(図 3-7 下)。単調漸増載荷を続けると、3 本 のひび割れ幅は概ね均等に拡大した。なお、表面パイ ゲージ 0.7mm, 裏面パイゲージ 0.74mm 時にクロスに 亀裂が生じたが、コンクリートと PRS の界面に剥離 は生じなかった。

表面パイゲージ1(0.2mm 時)

表面パイゲージ1 (0.5mm 時)

3本に分散

表面パイゲージ2(0.25mm時) 図 3-7 目地部のひび割れ分散状況

3.1.4 まとめ

常変位レベルで繰返し試験の結果,直 貼りクロス表面に亀裂等の変状は見られ ず、10年経過後もクロスの美観性を維持 できると推察される。一方,高変位レベル (目地幅変化 0.2~0.4mm) で単調引張試 験の結果,ひび割れは3本に分散し,幅 は低減した。目地幅変化が 0.4mm を超え るとひび割れは1本に集約した。以上に より, PRS は目地幅変化が 0.4mm までひ び割れ分散性を有することが分かった。

されるひび割れ分散現象が再現できた。

ひび割れ分散現象

3.2 クロス直貼り仕上げ強制変位試験

3.2.1 試験概要

本試験では目地材として, 無収縮モルタル, PRS, シーリングを充填し、性能比較試験を実施した。モル タルは目地材と躯体界面に亀裂の発生、シーリングは 目地材の窪みによるしわ・亀裂の発生が予測された。 一方,目地材を PRS とした挙動確認も行った。な お、試験体は、図 3-1の試験体概要、図 3-2の目地部 断面と同仕様とした。試験体仕様を表 3-1 に示す。

表 3-1 試験体仕様

番号	目地材	ひび割れ位置	接着面	備考	試験体精度
1	無収縮モルタ ル (NS ドカモル ハード)	目地中央	3 面接着	2018 年度 試験済み試験体 躯体を利用	 1番 ・クロス,目地材撤 去あり ・モルタル施工前
					に目地を目荒し
2	PRS(珪砂4号)	目地中央	3 面接着	2018年11月 PRS 施工済み 試験体を利用 (予備1体)	2番 (予備:4番) ・クロス撤去あり
3	シーリング (1 成分形変成 シリコーン系)	目地中央	3 面接着	2018年度 製作済み試験体 躯体を利用	 3番 ・クロス,目地材撤 去あり ・シール接着面に はプライマー塗布, シールは3面接着

3.2.2 試験方法

試験では精密万能試験機(インストロン 5982)を 使用し、強制変位に対する確認を行った。載荷スケジ ュールは変位 0mm をゼロ点、単調引張載荷とした。

3.2.3 試験結果

試験結果を図 3-8 および以下に示す。

- 1) 無収縮モルタル試験体は、コンクリート躯体と目 地材界面に剥離が生じた。パイゲージ変位の増加に 伴い、コンクリート躯体と目地材界面の亀裂が拡大 し、クロスのしわが目立った。試験機荷重は最大 762Nを示した後、パイゲージ変位の増加に伴い 徐々に低下し,パイゲージ変位 0.9mm 時にクロス の切れを確認した。
- 2) PRS 試験体は、試験機荷重を増加させたが、パイ ゲージ変位の増加が小さかった。試験中に試験体と 固定ジグのずれを確認したため、試験を一時停止 し、固定ジグボルトの増し締めを行った。試験を再 開し、パイゲージの平均変位 0.016mm 時に、PRS は脆性的な破壊を生じた。PRS の破壊位置は、コン クリート躯体に設けたひび割れ位置と同じく、目地 中央となった。
- 3) シーリング試験体は、コンクリート界面と目地材 界面の剥離は生じず、シーリングの伸びが発生し た。シーリングの伸びに伴い、パテの割れ、パテの 写真 3-2 に示す実建物の PRS 目地で確認 写真 3-2 実建物目地の へこみ,シーリング面内方向のへこみ,クロスのへ こみが発生した。試験機荷重は 392N まで上昇した

後,195Nまで低下し、その後パイゲージ変位の増 加に伴い試験機荷重も増加した。パイゲージ変位 1.0mm 時にクロスの切れが発生し、パイゲージ変位 1.2mm まで載荷し、クロス切れの進展を確認した。

表 3-2 に示すように、模型実験 PRS の最大引張応 力 2.343 (N/mm²) は、PRS 母材破壊の最大応力(対 鋼板実験値)と近似結果となった。また、模型実験の 無収縮モルタル、シーリングの最大引張応力の値に比 べ、PRSの最大引張応力の値は高い結果となった(図 3-9)。以上により、PRS とコンクリートとの接着力は 1 N/mm²以上であることが分かった。

-リング (変位 0.7 mm) 図 3-8 試験結果

表 3-2 試験結果

番号	目地材	最大荷重
		(最大応力)
1	無収縮モルタル	762(N)
	(NS ドカモルハード)	(0.068(N/mm ²))
2	PRS (珪砂 4 号)	26,243(N)
		(2.343(N/mm ²))
3	シーリング	392(N)
	(1 成分形変成シリコーン系)	(0.035(N/mm ²))

最大応力=最大荷重÷目地材断面積(280×20×2)

4. まとめ

4.1 目標性能

PRS の材料特性試験および模型実験の結果より、コ ンクリート面の目地内に施工された PRS は、以下の 性能と効果を有する。目標性能と材料の関係を表 4-1 に示す。

1) コンクリートとの接着性

PRSとコンクリートの接着力は1N/mm²以上である。 (効果) 一般に想定されるひび割れ幅の広がりや縮み の挙動では剥離が生じない。

2) 目地露出面の陥没抵抗性

PRS の目地露出面の窪み変形は 0.1mm 以下である。 (効果)通常の目地挙動では陥没は生じない。

3) ひび割れ分散性

PRSは目地幅の変化が0.4mmまではひび割れ分散性 を有する。

(効果) 目地幅の変化が 0.4mm までは, 一般的な目 地部充填材のモルタルと比較して, ひび割れ分散性 により、最大ひびわれ幅を低減できる。また、適用 範囲内ではモルタルのように接着界面に開きが生じ ることや、ひび割れが1箇所に集中しない。

表 4−1 目標性能と材料の関係									
材料	モルタル	シール	PRS						
性能									
コンクリートとの接	×	Δ	0						
着性(界面)	接着力低い	接着力高いが動く	高い接着力						

X

~~7

陥没抵抗性 ほぼなし やせ、 モルタルの 1/6 程度 ひび割れ分散性 \wedge なし (界面集中) 一定範囲まで分散 ひび割れ出たい

4.2 PRS の主な適用範囲

目地露出面の

PRS の主な適用範囲を以下に示す。

- 1) 内装制限が適用される壁又は天井の部分に目地が 露出する場合で、室内に面する目地部分の見付面積 は、各面の壁面積の1/10以内とする(ただし、床 面より 1.2m 以上)。
- 2) 誘発目地部分の止水性能を担保するものではない ため,外壁で使用する場合はシーリングや塗膜防水 等の防水処理が必要となる。
- 3) 本工法による目地充填の設計・監理および施工 は、CCB 工法協会 PRS 工法研究会または本研究会 が技術供与した者が行う。

5. 施工例

以下に、実建物での PRS の適用事例を紹介する。

5.1 PRS 壁目地充填工法

某分譲マンションの 2~9 階戸境壁(耐震壁)に対 し、CCB 工法を適用して誘発目地内にひび割れを誘導 し、PRS を充填してクロス直貼り仕上げを行った。充 填時は既に造作工事が完了し,打設後3か月以上が経 過していたため、目地底にひび割れを確認した。PRS の製造手順を図 5-1,施工手順を図 5-2 に示す。

①樹脂混練(主剤·硬化剤)

③珪砂混練(20~30秒)

目地底ひび割れ確認

③PRS 充填(下から上へ)

⑤表面仕上げ完了

⑦目地部パテ処理

②珪砂投入(4号)

④混合完了(濡れ色に変化) 図 5-1 PRS の製造手順

②養生、プライマー塗布

④PRS 表面押え

⑥室内仕上げ状況

⑧クロス直貼り仕上げ 図 5-2 PRS の施工手順

某ディベロッパーの仕様では、建物供用開始後の2年以 内に総戸数の10%強でクロスに亀裂が生じ、貼り替えの 是正処置が行われていた。CCB工法およびPRS目地充填工 法を標準仕様に変更した2017年以降の分譲マンションで は、戸境壁のひび割れクレームがゼロで継続している。

5.2 PRS床目地充填工法

某物流倉庫の土間床に対し、床CCB工法を適用してカ ッター目地内にひび割れを誘導し、PRSを充填して床は 素地仕上げとした。竣工3年経過後も肌分れが生じてい ない(図5-3)。一般に、物流倉庫や工場等の土間床で は、コンクリート打設後早期にカッター目地を設ける。 目地充填材の性能比較として,樹脂モルタルは乾燥収縮 や振動による肌分れによって飛散し、シーリングは圧縮 強度が低く、リーチ式フォークリフト等の繰り返し走行 によって目地肩に角欠けが生じる(図5-4)。一方, PRS は接着力や圧縮強度が高く、体積減少が小さいことか ら、上記充填材の弱点を補うことができる(図5-5)。

①PRS 混合完了(骨材グレー) ②目地底ひび割れ確認

③プライマー塗布

⑤充填状態(竣工時)

①樹脂モルタル肌分れと飛散 ②シール目地肩の角欠け 図 5-4 床目地施工状況

⑥充填状態(竣工後3年経過) 図 5-3 PRS の床目地施工状況

5.3 PRS補修工法 (壁・床・段差)

近年のコンクリートの高強度化も相まって、戸境壁に 対する通常の対策では不規則にひび割れが生じる(写真 5-1)ことがあり、高いコストをかけてUカットシール+ 樹脂モルタルによる補修は施したうえでクロス直貼りを 行うものの,経年後の再発が大いに懸念される(図5-6)。

クロス直貼りや吹付塗装下に生じた壁ひび割れに対し, Uカット+PRS+パテ処理(外壁は塗膜防水)を施すこと で,仕上げ表面の凹みを未然に防止できる(写真5-2)。 また,化粧打放し素地仕上げの壁に生じたひび割れに対 し,Uカット+PRSを施したうえで化粧補修をすることで, 意匠性を回復した事例もある。

ー方,長尺シートやPタイル下に生じた床ひび割れに対 し、Uカット+PRS+薄塗補修を施すことで、ミミズ腫れ を未然に防止できる。なお、基礎形式の違いにより、経年 で15mm程度の床段差が生じた際に、PRSの面仕上げによ って段差を解消した事例もある(図5-7)。

写真 5-1 ひび割れの補修事例 写真 5-2 壁 U カット + PRS

図 5-7 充填材の性能比較

謝辞

本報は、民間企業14社(淺沼組,熊谷組,西松建設,NIPPO, 飛島建設,大日本土木,長谷エコーポレーション,東急建設,五 洋建設,三井住友建設,共立建設,青木あすなろ建設,松井建設, 奥村組土木興業)が所属するCCB工法協会PRS工法研究会で実施 した共同研究による開発成果^[17]と施工例をまとめたものである。 材料特性試験および模型実験に多大なご協力をいただいた(㈱東 光商会,AOIトーマス(㈱,これまでに実施工および実験協力いた だいた関係者に謝意を表す。

【参考文献】

- [1] (財)日本建築総合試験所:浅沼式ひび割れ誘発目地付き耐力壁構法(改定),建築技術性能証明評価概要報告書(GBRC 性能証明第09-04号改),2011年5月
- [2] (一財)日本建築総合試験所:CCB工法-異形鉄筋を用いる ひび割れ誘発目地付耐震壁構法-(改定1),建築技術性能証 明評価概要報告書(GBRC性能証明第14-24号改1),2016年 12月
- [3] 松井 亮夫:コンクリートの収縮メカニズムに基づくRC壁のひび割れ制御に関する研究,京都大学学位論文,博士(工学),2017年3月
- [4] (一財)日本建築総合試験所:ポーラスレジンサンドの物性 試験報告書, 2017年8月
- [5] (一財)日本建築総合試験所:ポーラスレジンサンドの品質 試験報告書,2018年2月
- [6] (一財)日本建築総合試験所:ポーラスレジンサンドの線膨 張係数結果(参考),2017年8月
- [7] コニシ株式会社:ボンドビューシール6909カタログ,2021年 10月
- [8] CEMEDINE: S751NBカタログ
- [9] 株式会社ダイフレックス:シーカダイフレックスカタログ, 2016年6月
- [10] シーカ・ハマタイト株式会社: SC-PU2NBカタログ
- [11] シャープ化学工業株式会社: U2-PRO NBカタログ
- [12] 丸一 俊雄: 左官モルタルの接着強さについて, コンクリートジャーナル, 1968年6巻3号pp.21-33
- [13] ASTM international : ASTM C 190-77.Standard Test Method for TENSILE STRENGTH OF HYDRAULIC CEMENT MORTARS
- [14] 大野 義照,徐 泰錫,中川 隆夫:外部拘束を受ける鉄筋コンクリート部材の乾燥収縮ひび割れ幅の予測,日本建築学会構造系論文集/72 巻 (2007)616 号
- [15] 大野 義照,中川 隆夫,劉 勇,岸本 一蔵:鉄筋コンクリート壁の収縮ひび割れ幅の予測,コンクリート工学年次論文集, Vol.26, No.1, pp.513-518,2004.7
- [16] 三橋 博三:日本建築学会の収縮ひび割れ制御設計・施工指 針(案)の特徴,コンクリート工学,2007 年 45 巻 2 号 p. 9-15
- [17] (一財)日本建築総合試験所:ポーラスレジンサンド(PRS)
 -PRSを用いた目地充填工法-,建設材料技術性能証明評価概 要報告書(GBRC材料証明第22-01号),2022年5月