5. 簡易間柱柱脚工法の研究開発

Research and Development on Simplified Stud Base Method

山口 克彦*1 飛田 喜則*1 北野 秀幸*2

要旨

ー般的に鉄骨造建物(ショッピングセンター,物流倉庫,工場)では外装材・内装材を支持するために,主構 造の柱の間に間柱を設置する。その間柱の柱脚は建物の最下階で,鉄筋コンクリート造地中梁と接合される。こ の接合部は地中梁に接合用のアンカーボルトを打ち込み,間柱柱脚部のベースプレートをボルト接合する方法で 施工される。間柱柱脚部は主に風圧力に対してピン支持として設計されるが,従来の構造用アンカーボルトを用 いて施工されるため回転剛性を持ち,さらに位置精度確保など施工が煩雑になることが問題であった。

本開発では独自の柱脚機構を採用し、柱脚を簡単なものとすると同時に、施工性を改善した。

キーワード:ダウウェル筋/間柱/柱脚/構造実験

1. はじめに

一般的に鉄骨造建物では、外・内装材を支持するため に主構造の柱以外に間柱を設置する。その間柱の柱脚は、 建物の最下階で鉄筋コンクリート造(以下,RC造)地中 梁と接合される。この接合部は梁に接合用アンカーボル トを打込み、間柱柱脚部のベースプレートをボルト接合 する方法で施工される。さらに間柱の柱脚を埋め込み式 柱脚とする場合は、接合部をコンクリート内に納めるた めに梁の上部を増打ちする必要がある。設計上、間柱の 柱脚接合部はピン接合として設計される。つまり、モー メントは作用しないでせん断力だけが作用すると仮定さ れる。しかし、実際は完全なピン接合を再現したもので なく、間柱脚部にベースプレートを溶接し、埋め込まれ たアンカーボルトとボルト接合される剛接合に準ずる接 合方法で施工されている。設計上の部材モデルと実際の 部材とが一致しない一例である。

本開発では,鉄骨造建物の間柱の柱脚部を簡易な仕様 としながらも,必要な構造性能を有する簡易柱脚を開発 する。本報告では,開発にあたり実施した構造実験の結 果を述べる。

2. 工法概要

2.1 簡易間柱柱脚工法について

本工法は、間柱のウェブに貫通孔を開け、そこに異形 鉄筋(以降、ダウウェル筋と称する)を貫通させる。貫 通させたダウウェル筋は、下部の RC 造梁にあらかじめ 打ち込まれた増打ち補強筋に覆われるように設置される。 ダウウェル筋は架構面外方向に直交する方向に配置され、

*1技術研究所構造研究グループ *2大阪本店建築部工事課

貫通孔とは接合されていない。設計上想定される柱脚に 作用するせん断力は主として柱脚周辺のコンクリートに よって抵抗する。ダウウェル筋は想定以上の外力が加わ った時,柱脚のずれや抜け出しを防ぐ役割を果たす。 図-1に簡易間柱柱脚工法の概略図を示す。

本工法(簡易間柱柱脚工法)

図-1 簡易間柱柱脚工法の概略図

2.2 施工方法

従来のベースプレートとアンカーボルトを用いた柱脚 であれば、間柱を自立させることが前提である。しかし、 本工法は間柱を自立させることができないため、あらか じめ2階鉄骨大梁に間柱を取り付けた後に、梁と同時に 間柱を吊り込む方法になる。吊り下げられた間柱脚部は、 地中梁の増打ち補強筋の間に挿入し、ダウウェル筋をセ ットする。施工の手順を図-2に示す。

正確な位置あわせと建ちの調整は適宜行うものとする。 間柱柱脚セット参考例を図-3に、目地等で縁切りして、 柱脚部のみ後打ちする時の注意点を図-4に示したので、 コストを含めて随時適宜な方法で選択する。 3. 実験計画

3.1 実験概要

構造実験に用いる試験体は(仮称)ビバモール和泉新 築工事における P1, P2 間柱と間柱下部の RC 造地中梁に 準じた。スケールは実大とし,材料強度も同様のものと した。

試験体形状は地中梁,スラブコンクリートの一部及び 間柱で構成される。間柱の長さは,試験装置の関係上実 大と同様の長さの半分程度とした。長さが短くなること で,載荷時のモーメントとせん断力の関係を意味するシ アスパン比が小さくなる。つまり,せん断力が卓越する 載荷形式となるが,本実験の目的であるせん断耐力の検

証においては実験結果が安全側の評価につながると判断 した。実験では,柱脚部のせん断耐力および柱脚周辺の コンクリートのひび割れ性状について検証する。

3.2 試験体

試験体は幅, せい及び長さが 500mm×1000mm×1400mm, 上・下端筋ともに 5-D25, あばら筋 D13@200 の RC 造梁 とし, その上部を 250mm 増打ちし, その上面と同面にな るように厚さが 150mm, 配筋が上下ともに D10@200 ダ ブルとしたスラブを配置する。なお, その増打ち部分に H-250×125×6×9の間柱の底面を 200mm の深さまで埋め込 む。コンクリートの呼び名は 24-18-20N, 鉄筋の種類は D10~D16 (SD295A), D19~D25 (SD345), 鋼材の種別は

表-1 コンクリートの材料特性

学际体力	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	圧縮強度	引張強度
武敏14-石	呼び名	(N/mm ²)	(N/mm ²)
SCFS		37.0	2.30
SCFN	24 18 20N		
SCFNR	24-10-20IN		
SCFNBPR		32.4	2.59

SS400 とした。柱脚の接合形式の違いをパラメータとした。ダウウェル筋は D25 (L=500mm) とし、間柱のウェ ブ中央に設けた \$\phi\$ 28mm の孔に貫通させた。使用する材料の特性を表-1,2に示す。

試験体数は4体とし, 表-3に試験体諸元,図-5.1~ 5.4に試験体形状(在来工法による標準試験体 SCFS, ベ ースプレートを設けた簡易柱脚試験体 SCFN, ベースプレ ートとU字型筋を設けた簡易柱脚補強試験体 SCFNR, ベ ースプレートをなくしてU字型筋を2本設けた簡易柱脚 補強試験体 SCFNBPR)を示す。なお,U字型筋は柱脚の ひび割れ抑制の一諸元とした。ひずみゲージ位置を図中 及び図-5.5~5.6に示す。●はロゼットゲージを示す。

表-2 鉄筋の材料特性

尔	鋼種	降伏強度	引張強度		
		(N/mm ²)	(N/mm ²)		
D10		345.79	489.80		
D13	SD295A	356.54	508.82		
D16		361.46	535.51		
D25	SD345	371.95	565.39		
D25	SD345	371.95	565.39		

表-3 試験体諸元

試験体名	柱脚固定	埋め込み	ベース プレート	U字型筋 D16,L=800	備考
SCFS	アンカーボルト 4-M16(J型),L=500		200×225×12	なし	在来工法による標準試験体
SCFN		500~225~12			簡易柱脚試験体
SCFNR	ダウウェル筋 1 D25 L = 500	あり	(33400)	(33400) 1本	柱脚足下に割れ止めのU字型筋を1本 設けた簡易柱脚補強試験体
SCFNBPR	1-D25,L=500		なし	2本	ベースプレートを無くし柱脚足下に割れ止めの U字型筋を2本設けた簡易柱脚補強試験体

図-5.1 標準試験体 (SCFS)

図-5.5 コンクリートゲージ貼り付け位置(共通)

図-6 載荷装置

3.3 載荷装置

図-6に載荷装置及び変位計測定位置を示す。

試験体は柱を水平に配置し, RC 造のレベル調整用載荷 ベッドを介して, PC 鋼棒にて反力床に緊結した。間柱の 柱頭部は大梁を模した H 形鋼にボルト接合した。H 形鋼 は同様に PC 鋼棒にて反力床に緊結した。載荷用の 200kN アクチュエーターは鋼製の門型フレームに吊り下げて, 間柱の内法スパン中央部を押引きできるように間柱の載 荷部にボルトで緊結した。加力方向①の荷重と変位をプ ラス (+), 加力方向を②をマイナス (-) とする。

変位計測は加力点位置(A)及び柱脚から 3cm, 25cm 離れた位置(B)(C)にて柱脚のずれ・傾きを計測した。

3.4 載荷履歴

載荷履歴を図-7 に示す。ただし、支点間距離を 2L=3376mm とした。

載荷は振幅を δ=1.68, 3.38, 8.44, 11.20, 16.88, 33.76mm の 6STEP, 各 100 サイクルの正弦波による変位制御とし た。1~4STEP までは,間柱の両端部を支持する形式で載 荷した。両端支持形式のままだと所定の変位まで載荷で きないため、5STEP 以降は間柱柱頭部のボルトを外して 柱脚部だけを支持する片持ち形式とした。

4. 実験結果

4.1 荷重-変形関係及び最終ひび割れ状況

図-8 に各試験体の荷重-変形関係と実験終了時のひ び割れ状況を示す。荷重-変形関係には設計荷重として 想定される風圧力による設計せん断力(2Qdmax=36kN) を併記した。これは間柱が負担する受圧面積から算出し た。全ての試験体は設計せん断力の範囲においては、安 定した履歴性状を示し、耐力に余裕があることがわかる。

SCFS 試験体は 1STEP から外端部にひび割れが発生し, 4STEP にて鉄骨フランジ端から 45°方向のひび割れが生 じ,その後拡大し 6STEP にて外端部のベースプレート位 置のひび割れが発生した。 SCFN 試験体は 1STEP から外端・表面ともにひび割れ が発生し、2STEP にて外端部のダウウェル筋位置、3STEP にてベースプレート位置のひび割れが発生し、4STEP に て鉄骨フランジ端から 45°方向のひび割れが生じ拡大し た。

SCFNR 試験体は,SCFN 試験体と同様なひび割れ発生の経過をしたが,比較するとひび割れ本数が多く,ひび割れ幅が小さかった。

SCFNBPR 試験体は、初期ひび割れが発生せず、3STEP で初めてひび割れが発生し、4STEP にて鉄骨フランジ端 から 45°方向のひび割れが顕著になり、6STEP にて H 鋼 の抜け出しが支配的となった。

図-8 荷重-変形関係と最終ひび割れ状況

Ρ

4

-L

≥ີ

 $M_1 = M_0 - M_2$

S

L/2

RC

M_{fg}=φ_s•E_s•I_s

Q,

• a=M

4.2 曲げモーメント分布

鉄骨フランジに貼り付けたゲージ値から算出した曲げ モーメントを Mfg, 鉄骨ウェブに貼り付けた 3 軸ゲージ 値から算出したせん断力 Qw とする。これを元に S 端部 の曲げモーメント M2, 加力点の曲げモーメント M1 を算 出した。算出する際の概要図と各試験体の正負 STEP の 曲げモーメント分布を図-9, 10 に示す。

SCFS, SCFNBPR 試験体は鉄骨端部の曲げモーメント が小さくピン接合に近い分布を示しているのに対し, SCFN, SCFNR 試験体は鉄骨梁のてこ作用によりせん断 力が増大し、両端固定に似た分布を示している。

図-10 各試験体の曲げモーメント分布

4.3 固定度と回転剛性の比較

回転剛性を算出する上での概要図を図-11 に、材端の 固定度-回転剛性関係(正載荷)を図-12 に示す。固定 度は材端に生じる曲げモーメントの固定端モーメントに 対する比を表す。回転剛性は材端に設置した変位計の差 から算出した回転角の曲げモーメントに対する比を表す。

ベースプレートのある SCFS, SCFN, SCFNR 試験体の 固定度は 0.3~0.9 の範囲にあるのに対して, ベースプレ ートのない SCFNBPR 試験体の固定度は 0.0~0.5 の範囲 にあり,よりピン接合に近いことがわかる。

4.4 各部位のひずみ分布

鉄骨フランジ端から 45°方向に発生するひび割れを抑 制するために,H型鋼を囲むようにスラブから伸長して 設けたU字型筋の効果を確認するために SCFNR, SCFNBPR両試験体のU字型筋のひずみ分布を確認した。 U字型筋のひずみ分布を図-13に示す。

上記のひび割れが初期段階から発生した SCFNR 試験 体,ひび割れが初期段階では全く発生しなかった SCFNBPR 試験体の両試験体ともに初期段階ではほとん どひずみが発生しなかった。ひび割れが伸展した最終サ イクルにおいても,ひずみは1000µ以下となり,弾性範 囲内に収まっている。以上から,U字型筋がひび割れ抑 制に有効に働いていないものと推定される。

5. コスト比較

在来工法はベースプレート・溶接・穴あけ・アンカー セット・セット用治具一式で¥35,000/柱に対し、本工法 はダウウェル筋 (D25 L=500mm)、ウェブ穴あけ ϕ 30 で¥600/柱となり、1柱当り¥34,400の減額となる。

6. まとめ

本研究により得られた知見を以下に示す。

- 想定される風圧力による設計せん断力 2Qdmax(36kN)の範囲内では在来,本工法ともに繰 返し載荷を行っても安定した履歴性状を示した。
- 想 定 される風圧力による設計せん断力 2Qdmax(36kN)の範囲内では在来工法では初期ひ び割れが発生したのに対し, SCFNBPR 試験体では, 3STEP までひび割れが発生しなかった。
- ベースプレートのある試験体の固定度は概ね 0.5 以上であるのに対し, SCFNBPR 試験体では 0.5 未 満になることが確認された。
- 4) ひび割れ制御のために設けた U 字型筋は、想定さ

れる風圧力による設計せん断力 2Qdmax(36kN)の範 囲内では有効に働いていないものと推定される。 以上から,鉄骨ウェブの中央にダウウェル筋を設け, ベースプレートとU字型筋を設けない本工法がひび割れ 低減の観点から有効であることが実験から確認された。

今後は、本工法を当社設計施工の案件で採用するため に設計仕様に盛り込んでいくことを検討する。

【謝辞】

本実験を実施するにあたり,竹沢建設試験体事業部の 佐藤尚隆氏に多くのご助言とご協力を頂きました。ここ に記して感謝の意を表します。 [参考文献]

- 西本ほか:鉄骨小梁端高力ボルト接合部の回転剛性 とすべり耐力 その1~2,日本建築学会大会学術 講演梗概集(北陸),B-1,pp.703-706,2010年9月
- 2) 秋山宏:鉄骨柱脚の耐震設計,技報堂出版

本報告は、社内の第9回技術発表会 において発表された内容を編集し たものです。