5. 開孔が近接した RC 基礎梁の実験的研究

Experimental Study on RC Footing Beams with Closer Web Openings

山下 勝司*1 森 浩二*1

要 旨

RC 基礎梁には、人通孔(大開孔)とともに、複数の設備配管孔(中開孔)が設けられることが多いが、梁貫通 孔の間隔に関する一般的な構造規定により、貫通孔の設置範囲が大幅に制限されてきた。

そこで、基礎梁の貫通孔設計の自由度を向上させるため、本研究では 2 つの中開孔を大開孔に近接させた梁試 験体の曲げせん断実験を実施して、せん断性状について評価した。その結果、大開孔と中開孔に挟まれた領域の せん断補強を十分に行えば、中開孔が近接した大開孔を有する基礎梁においても、既往の有孔梁のせん断強度式 を用いて安全側にせん断強度を評価できることを示した。

キーワード:基礎梁/有孔梁/近接開孔/せん断強度

1. はじめに

RC 造建物の基礎梁には、人通孔(大開孔)とともに、 電気、上下水等の設備配管を通すための複数の設備配 管孔(中開孔)が設けられることが多い。その際、開 孔の中心間隔は隣接する開孔径の平均の3倍以上離す ことが望ましいとされている¹⁾。しかしながら、一般 に基礎梁は梁せいが大きいため、柱際のヒンジ領域を 避けると開孔を設置可能な範囲が狭く、複数貫通孔を 設ける必要がある場合には、配管計画が困難となる。

そこで、本研究では、基礎梁の貫通孔設計の自由度 を向上させるために、開孔の間隔が緩和できるように する(隣接する開孔径の平均の2倍程度に離す)こと を目的とし、2つの中開孔を大開孔に近接させた梁試 験体の曲げせん断実験を実施して、RC基礎梁のせん断 性状について評価した。^{2),3),4),5)}

2. 実験概要

2.1 試験体

試験体は 1/3 縮尺の梁両端部にスタブを有する形状で、 基礎梁には人通孔を模擬した大開孔 1 つと設備用貫通孔 を模擬した中開孔 2 つの合計 3 つの開孔を配置した。梁 断面は $b \times D=300 \times 750$ mm、梁内法長さは L=2,250mm、 せん断スパン比は a/D=1.5 (a=L/2) である。大開孔の直 径は $\phi 250$ mm(=D/3)、中開孔の直径は $\phi 125$ mm(=D/6)とし た。

試験体一覧を表-1に、試験体の配筋例を図-1に示す。 試験体は No.1 から No.6 の 6 体であり、いずれも大開孔 部のせん断破壊が先行するように、梁主筋は熱処理品 8-D16 (980N/mm² 級、p_t=0.77%)を使用した。主な実験 因子は、開孔間隔と大開孔周囲の補強筋量と補強方法(図 -1 の配筋例で示す孔際補強筋、開孔補強金物、水平補強 筋、開孔部上下補強筋)であり、大開孔周囲の補強を中

	胆石中心胆巧神	大開孔 🛛 250		中開孔 Ø 125		大開孔上下	■共通事項
司马臾1平	武殿14 開北中心间距離		補強金物	孔際補強筋	補強金物	(梁型補強)	梁断面:b×D=300×750mm
				4-D6×1組		水平補強筋	梁内法寸法:L=2,250mm
No. 1	562. 5mm			+2-D6×2組		2-D6	梁主筋:上下共8-D16(熱処理品)
	(3H)			p _s =0. 25%		上下補強筋	引張鉄筋比:p _t =0. 77%
No. 2		4-D6×3組	2-S6×4枚			2-D6×2組	せん断補強筋:4-D6@70(SD295A)
NO. 2		p _s =0. 38%	p _d =0.36%				せん断補強筋比:p _w =0.60%
No.2				4-D6×2組	2-S8×2枚		孔際補強筋比:p _s =a _s /(b・c)
NO. 3	375mm			p _s =0. 25%	p _d =0. 28%		補強金物の補強筋比:p _d = √2 a _d /(b・c)
No. 4	(2H)		<i>†</i> >1			水平補強筋	a _s :孔際補強筋断面積
NO. 4			ふし			7–D10	a _d :孔際補強筋断面積
No 5		4-D6×1組		2-D6×1組		上下補強筋	c:C区間距離=335mm
NO. 5		p₅=0. 13%	2-S6×4枚	p _s =0. 06%		2-D6×6組	隣接する2孔の直径平均値:
No. 6	※No. 6中開孔が上に125mm偏芯	4-D6×3組	p _d =0.36%	4-D6×2組			H=(250+125)/2=187.5mm
NO. 0		p _s =0. 38%		p _s =0. 25%			

表-1 試験体一覧

*1技術研究所構造研究グループ

心に各試験体の概要を以下に記す。なお、表-1に示す孔 際補強筋の補強筋比は、大開孔用と中開孔用に分別して 取り扱うこととし算定した。例えば、図-1の No.3 で C 区間(開孔周囲の補強筋の有効な範囲)を示す斜め45度 の線は5組の孔際補強筋と交差するが、大開孔用として3 組、中開孔用として2組を用いて、補強筋比を算定した。 No.1:孔の中心間距離は隣合う孔径平均の3倍とした。

- 各々の孔の上下には水平補強筋として 2-D6 を配し、コ 形の開孔部上下補強筋で梁型を組んだ。
- No.2: No.1 に対して、孔の中心間距離を2倍に近接させ ただけで、大開孔と中開孔の間に配した孔際補強筋の 総量は No.1 と同じとした。ただし、水平補強筋(2-D6) は1本の折り曲げ鉄筋で3つの孔を補強した。
- No.3: No.2 に対して、水平補強筋を 7-D10 に増やし、閉 鎖型の開孔部上下補強筋で梁型を組んだ。
- No.4:No.3 に対して、大開孔の開孔補強金物を無くした。
- No.5: No.3 に対して、大開孔と中開孔の間に配筋した孔 際補強筋の総量を約 30%に減らした。
- No.6: No.3 に対して、2 つの中開孔を 125mm 梁上部に配置させた。

試験体に使用したコンクリートと鉄筋の特性をまとめて表-2に示す。

2.2 実験方法

加力装置を**写真-1**に示す。試験体は縦置きとし、カウ ンターウェイトにより軸力がほぼ0となるよう調節した。 水平力の載荷位置は試験体のスパン中央部とし、スタブ が平行移動するよう、2本の鉛直ジャッキにより調節した。

加力サイクルを図-2に示す。正負交番繰り返しの漸増 載荷とし、1/1000 (rad) では1回、2.5/1000, 5/1000 (rad)、 大開孔部の短期許容せん断力 Q_{AOS}時では2回、10/1000, 15/1000,20/1000 (rad) では1回の繰り返し載荷とした。 また、R=15/1000 (rad) 以降は、ピーク時のせん断力が前 サイクルの1/2 未満であった場合は、そのサイクルで載荷 を終了した。

図-2 基本加力サイクル

図-1 試験体配筋例(上:No.1,下:No.3)

表-2 使用材料の特性

	弾性係数	圧縮強度	割裂強度	
1200-6	(kN/mm ²)	(N/mm^2)	(N/mm^2)	
No1, 2	27.6	30.8	2.2	
No3, 4	28.8	32.0	2. 2	
No5, 6	28.8	33.7	2.3	

\$1 55	使用如位	弾性係数	降伏ひずみ	降伏強度	引張強度
亚大 月刀	使用即位	(kN/mm²)	(μ)	(N/mm ²)	(N/mm ²)
D16 (熱処理)	梁主筋	182	5462	995	1038
D6 (SD295A)	せん断補強筋	168	4261	381*	518
D10 (SD295A)	水平補強筋	179	2129	380	556
S6 (785級)	開孔補強筋	177	7038	891*	1108
S8(785級) 開孔補強筋		180	7111	922*	1128
D10 (SD295A) S6 (785級) S8 (785級)	水平補強筋 開孔補強筋 開孔補強筋	179 177 180	2129 7038 7111	380 380 891* 922*	556 1108 1128

*0.2%オフセット法による

写真-1 加力装置

3. 実験結果

3.1 破壊経過と荷重変形関係

各試験体のせん断力 Q-部材角 R 関係を図-3 に、破 壊状況(破壊部位が明確になった部材角時)を写真-2 に、実験結果一覧を表-3 にひび割れ発生位置の模式図と ともに示す。なお、模式図は特定のひび割れを指すもの ではなく、初ひび割れ位置を示すものである。

各試験体共通で、R=1/1000radの繰返しで梁端部に曲げ ひび割れが発生し、大開孔と中開孔の孔際にせん断ひび 割れが観察された。そして、R=1/400rad の繰返しで一般 部にせん断ひび割れが、R=1/200rad の繰返しで開孔間と 大開孔上下部分にせん断ひび割れが発生し、R=1/100rad の繰返しでは大開孔側の孔際補強筋と開孔部上下補強筋 が降伏した。ひび割れの発生順については、開孔間隔、 開孔周囲の補強筋量や中開孔の上部配置による影響はな かったと言える。以後、試験体 No.1,5 は、開孔間の損傷 が卓越し、開孔間がせん断破壊した。一方、試験体 No.2, 3,4,6 は、大開孔の上下部分がせん断破壊し、急激な耐力

No.1 (R=1/67)

No. 4 (R=-1/67)

No. 2 (R=1/67)

.

No.3 (R=1/67)

No. 6 (R=1/50)

写真-2 破壊状況(破壊位置が明確になった部材角時)

低下が見られた。

試験体 No.1,2 を比較すると、最大耐力は開孔間隔の狭 い試験体 No.2 の方が高くなった。これは、狭くなった開 孔間部分が大開孔の C 区間領域内に存在し、この領域内 に大開孔側の孔際補強筋と中開孔側の孔際補強筋が集約 されて配筋していることによると考えられる。試験体 No.2,3 では、最大耐力は開孔上下部分を梁型に補強した 試験体 No.3 の方が高くなった。開孔周囲の補強筋比が異 なる試験体 No.3,4,5 では、補強金物よりも開孔間に存在 する補強筋の方が最大耐力に与える影響が大きくなった。 中開孔位置が異なる試験体 No.3,6 では、最大耐力は中開 孔を梁上部に配置した試験体 No.6 の方が高くなった。こ れは、中開孔が偏心して配置されることにより、開孔間 のコンクリートの圧縮ストラットの形成状況が異なるた めと考えられる。

3.2 鉄筋のひずみ性状

3.2.1 梁主筋のひずみ

梁主筋のひずみは、全試験体ともゲージ貼付位置では 降伏ひずみには到達していない。このことから、図-3 の荷重変形関係で示したように、最大耐力が曲げ降伏時 せん断力には達していないことと整合している。

3.2.2 補強筋のひずみ

補強筋のひずみは図-4に示すように、大開孔周辺の補 強筋に貼り付けたひずみゲージで検討を行った。大開孔 周囲の補強筋は孔際補強筋 (S筋)、補強金物 (D筋)、水 平補強筋 (H筋)、開孔部上下補強筋 (W筋) である。こ れらの補強筋の効き具合を比較するため各ひずみを降伏 ひずみ (ε_y) で無次元化した。この無次元化した値を横 軸にせん断力を縦軸にした関係を図-5に示す。各補強筋 ともに複数のひずみゲージを貼り付けている。そのなか で最大耐力時にひずみが一番大きい箇所を採用してプロ ットしている。なお、図中の(\odot)は最大耐力実験値 (Q_{max}) を示し、無次元化した値 ($\varepsilon/\varepsilon_y$) が 1.0 を超えたものは 降伏ひずみに到達したことを意味する。

(1) 孔際補強筋 (S筋)

孔際補強筋は全試験体ともに徐々にひずみの値が増加 し、最大耐力に到達する前に降伏している。孔際補強筋 の補強筋比が少ない No.1 と No.5 は他の試験体と比較し て大きなひずみの値となっており、最終破壊状況が大開 孔と中開孔の開孔間の破壊であることに対応している。

(2) 補強金物 (D 筋)

補強金物がない No.4 を除く、全試験体の補強金物は高強 度鉄筋 (785N/mm²級) であり、降伏に至っていない。ま た、無次元化した値は最大でも $\epsilon / \epsilon_y = 0.5$ 程度である。孔

表-3	実験結果-	-覧とひび割	れ発生位置の構	莫式図

	曲げ	斜めひび割れ					補強的	筋降伏	最大耐力
	(a)Q _{cr}	(b)Q _{sc}	(c)Q _{d1}	$(d)Q_{d2}$	(e)Q _{rl}	(f)Q _{tb}	$(g)Q_{sy}$	(h)Q _{wy}	(i)Q _{max}
	+					•	×		•
No.1	140	291	228	291	286	295	478	615	615
No.2	160	271	185	271	314	314	651	543	655
No.3	121	293	198	293	363	278	686	561	727
No.4	113	392	187	187	421	368	542	658	671
No.5	147	243	199	199	404	411	489	581	581
No.6	175	274	193	205	454	395	-660	635	841
(a) (b) (c) (c) (c) (d) (a) (a) (c) (c) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c									
(a)Q _{cr} :曲げひび割れ,(b)Q _{sc} :一般部せん断ひび割れ,(c)Q _{d1} :大開孔せん断ひび割れ (d)Q _{d2} :中開孔せん断ひび割れ,(e)Q _d :大開孔左右部,(f)Q _{b2} :大開孔上下部 (g)Q _{sv} :孔際補強筋降伏,(h)Q _{m2} :開孔部上下補強筋降伏,(i)Q _{msx} :最大耐力 (単位:kN)									

際補強筋が異なる No.3 と No.5 を比較すると、無次元化 したひずみの値には大きな差がないことがわかった。

(3) 開孔部上下補強筋(W筋)

開孔部上下補強筋は最大耐力時に全試験体ともに降伏 している。開孔間で破壊をした No.1 と No.5 は最大耐力 時付近で降伏に到達している。一方、他の試験体は最大 耐力に到達する以前に降伏している。早期に補強筋が降 伏しているため補強筋の効果が高いと言える。これらの 試験体の最終破壊状況は開孔部上下の破壊となっている。

(4) 水平補強筋(H筋)

水平補強筋は全試験体(No.1 を除く)ともに最大耐力 時には降伏ひずみには到達していない。No.2 の水平補強 筋は2-D6で補強量が少なく、最大耐力後に降伏している。 一方、他の試験体の水平補強筋は 7-D10 であり、No.2 と 比較して補強量が多い。最大耐力後も降伏ひずみには到 達していない。また、補強金物のない No.4 の水平補強筋 のひずみは、No.3~No.6 の試験体の中で比較すると若干 大きいことがわかった。

以上より、孔際補強筋と開孔部上下補強筋がせん断強 度および最終破壊状況に影響があると考えられる。

3.3 大開孔周辺のひび割れ幅

大開孔の影響範囲(C 区間の範囲)に発生、進展した せん断ひび割れ(曲げせん断ひび割れを含む)を検討対 象として、ひび割れ幅をクラックスケールで計測した。

全試験体の所定部材角ピーク時(1回目)の最大ひび割 れ幅を縦軸、孔周囲の補強筋比(p_s+p_d)を横軸としたひ び割れ幅の推移を図ー6に示す。ひび割れ幅は部材角の増 大とともに大きくなった。そして、孔周囲の補強筋比が 大きい試験体ほど、ひび割れ幅の拡幅が小さい傾向が見 られる。

No.3 と補強金物がない No.4 と比較すると、No.4 のひ び割れ幅が大きく、補強金物が開孔周囲のひび割れ幅の 抑制に寄与していると考えられる。また、負加力時のひ び割れ幅が正加力時よりも大きいが±1/400rad 時までは No.4 を除き、全ての試験体ともに 0.15mm以下であった。 ±1/200rad 時のひび割れ幅は補強金物のない No.4 と中開 孔が上部に偏心して配置された No.6 の 2 体は 0.3mm を超 えていた。

4. 開孔部のせん断強度

4.1 実験値と計算値の比較

各試験体の最大耐力実験値と大開孔の開孔部せん断強 度計算値の比較を表-4、図-7に示す⁴⁾。算定式は(1)式 を用い、修正広沢式による単独孔の開孔部せん断強度式 ¹⁾を他の開孔近接する場合にも適用できるとして準用し た。

$$Q_{suo} = \left\{ \frac{0.053 p_t^{0.23} (\sigma_B + 18)}{M/(Q \cdot d) + 0.12} \left(1 - 1.61 \frac{H}{D} \right) + 0.85 \sqrt{p_d \cdot {}_d \sigma_y + p_s \cdot {}_s \sigma_y} \right\} b \cdot j \qquad (1)$$

ただし⁶)、 $\sigma_B \leq 27 \mathcal{O}$ 時、 $_d\sigma_y, _s\sigma_y \leq 20 \cdot \sigma_B$ $27 < \sigma_B \leq 36 \mathcal{O}$ 時、 $_d\sigma_y, _s\sigma_y \leq 40 \cdot \sigma_B - 540$ $36 < \sigma_B$ \mathcal{O} 時、 $_d\sigma_y, _s\sigma_y \leq 25 \cdot \sigma_B$

b:梁幅、D:梁せい、d:有効せい、j:応力中心間距離 $M(Q \cdot d): せん断スパン比、<math>p_i$:引張鉄筋比、H:開孔径 p_d :補強金物の補強筋比、 p_s :孔際補強筋比、 $\sigma_B: コンクリート圧縮強度$ $<math>d\sigma_y$:補強金物の降伏強度、 $s\sigma_y$:孔際補強筋の降伏強度 開孔中心間距離を双方の開孔径平均の3倍とした試験 体No.1は、計算値に対する実験値の割合が1.46となり、 実験結果を安全側に評価している。開孔中心間距離を双 方の開孔径平均の2倍とした試験体については、2節でも 記述しているが、開孔間の補強筋が双方の開孔のC区間 領域内に存在しているこのため、開孔間の補強筋を大開 孔側の孔際補強筋と中開孔側の孔際補強筋とに分別して 算定した。その結果、実験値は計算値を上回り、計算値 に対する実験値の割合(Q_{max}/Q_{suol})は1.43~2.20となっ た。また、開孔間の補強筋を分別しない場合についても 計算すると、計算値に対する実験値の割合(Q_{max}/Q_{suo2}) は1.40~1.87となり、計算値は実験値を安全側に評価し ている。

4.2 実験因子の影響

実験因子に対して、実験値と計算値の関係について検 討する。ここでは、計算値は開孔間の補強筋を分別しな い場合(p_{s2}、Q_{suo2})に着目する。

試験体 No.2 は No.1 に対して、開孔が近接した試験体 であり、開孔が近接しても、計算値に対する実験値の割

		1	() ())			~	4		^	
	 		(a)(b)	(a)分別した場合	Ĵ	(b	(b)分別しない場合		
試験体名		破壊	補強筋比	補強筋比	せん断強度	実/計	補強筋比	せん断強度	実/計	
	Q _{max}	位置	Pd	p _{s1}	Q _{suo1}	Q _{max}	p _{s2}	Q _{suo2}	Q _{max}	
	(kN)		(%)	(%)	(kN)	Q _{suo1}	(%)	(kN)	Q _{suo2}	
No.1	615	開孔間	0.36	0.38	421	1.46	0.38	421	1.46	
No.2	655	大開孔上下	0.36	0.38	421	1.55	0.63	456	1.44	
No.3	727	大開孔上下	0.36	0.38	431	1.69	0.63	465	1.56	
No.4	671	大開孔上下	0.00	0.38	304	2.21	0.63	358	1.87	
No.5	581	開孔間	0.36	0.13	406	1.43	0.19	416	1.40	
No.6	841	大開孔上下	0.36	0.38	444	1.90	0.63	478	1.76	

表-4 実験値と計算値の比較

(開孔間の補強筋を分別しないで算定した場合)

図-7 実験値と計算値の比較

合は同程度であり、単開孔の梁と同様に計算値は実験値 を安全側に評価している。

試験体 No.3 は No.2 に対して、開孔部上下補強筋と水 平補強筋が多い試験体である。計算式にはこの補強効果 が入っていないため、No.3 は No.2 に比べて計算値に対す る実験値の割合の差が大きくなったが、No.2 の場合にお いても、計算値は実験値を安全側に評価することを確認 できた。

試験体 No.4 は No.3 に対して、補強金物が無い試験体 であり、その影響で No.4 は No.3 に比べて最大耐力が低 下しているが、計算式ほど最大耐力には寄与しなかった。

試験体 No.5 は No.3 に対して、孔際補強筋が少ない試 験体であり、孔際補強筋比が最大耐力に与える影響は大 きく、計算値に対する実験値の割合も減少した。

試験体 No.6 は No.3 に対して、中開孔の配置が梁上部 に偏心した試験体であるが、この場合も計算値は実験値 を安全側に評価することを確認できた。

5. まとめ

中開孔を大開孔に近接させた梁試験体の曲げせん断実 験により、RC 基礎梁のせん断性状について評価した。

- 本実験の範囲内であるが、下記の知見が得られた。
- (1) 破壊形式は、開孔間のせん断破壊と大開孔上下部 分のせん断破壊に区別された。
- (2) 孔際補強筋と開孔部上下補強筋は降伏しており、 せん断強度の増大に有効に寄与した。
- (3) 開孔補強金物は開孔周囲のひび割れ幅の抑制に効 果が見られた。
- (4) せん断補強を十分に行った場合では、開孔部のせん断強度は、既往の単開孔のせん断強度算定式を 準用することにより、安全側に評価することがで きる。

[謝 辞]

本研究は、民間企業 12 社(青木あすなろ建設、淺沼組、 奥村組、熊谷組、鴻池組、錢高組、東亜建設工業、飛島 建設、長谷エコーポレーション、ピーエス三菱、三井住 友建設、コーリョー建販)によって行われました。関係 各位に謝意を表します。また、本研究を行うにあたりご 指導頂きました千葉大学の和泉信之教授に謝意を表しま す。

[参考文献]

 日本建築学会:鉄筋コンクリート構造計算規準・同解 説、pp.354-364、2010 年版

- 2) 濱田真,五十嵐治人,村上秀夫,和泉信之:中開孔が 近接した大開孔を有する RC 基礎梁のせん断性状,コ ンクリート工学年次論文集, Vol.36, No.2, pp.133-138, 2014.
- 3) 五十嵐治人,細矢博,濱田真,猪飼吉宏,江頭寛,岩 倉知行,和泉信之:中開孔が近接した大開孔を有する RC 基礎梁の実験的研究(その1)実験概要,日本建築 学会大会学術講演梗概集 C-2,構造IV,pp.223-224,2014.
- 山下勝司,波田雅也,村上秀夫,森和久,平田延明, 稲生雅史,和泉信之:中開孔が近接した大開孔を有す る RC 基礎梁の実験的研究(その2)実験結果,日本建 築学会大会学術講演梗概集 C-2,構造IV, pp.225-226, 2014.
- 5) 近藤祐輔,波田雅也,山下勝司,細矢博,村上秀夫, 平田延明,和泉信之:中開孔が近接した大開孔を有す る RC 基礎梁の実験的研究(その3)鉄筋のひずみとひ び割れ幅,日本建築学会大会学術講演梗概集 C-2,構造 IV, pp.227-228, 2014.
- コーリョー建販株式会社:ダイヤレン NS 技術マニュ アル, pp.18-21, 2014.