1. RM ユニットを用いた増設耐震壁補強工法の開発

ーその4 接着工法によるドア開口付き増設壁および増打ち壁-

Development of RM Retrofit Shear Wall

 Part 4 Shear Wall with Door Opening and Thickening Existing Shear Wall with Joint Method using Epoxy Resin —

中澤 敏樹*1 森 浩二*1

要旨

既開発の RM 耐震補強工法の適用範囲を拡大するため、接着工法によるドア開口付き増設壁および増打ち壁の フレーム実験を行った。鉄筋コンクリート(RC)造柱梁架構と RM 壁板との接合は接着工法とした。上下の梁面 には、異形筋スタッドを溶接した鋼板をエポキシ樹脂で接着した。柱壁間の接合部には鋼板を設置せず、柱面は 目荒らしによる表面処理のみとした。実験の結果、ドア開口付き増設壁では、引張側の壁脚がすべり、圧縮側の そで壁と柱がせん断破壊となる破壊モードを考慮することによって、終局せん断耐力を安全側に評価できること を確認した。さらに、増打ち壁では、既存 RC 壁の終局せん断耐力と増打ち RM 壁板のせん断耐力を足し合わせる ことで、終局せん断耐力を安全側に評価できることを確認した。

キーワード: RM 耐震補強工法/接着工法/ドア開口/増打ち壁

1. はじめに

RM 耐震補強工法は、図-1に示すように小型・軽量の RMユニットを用いた組積壁による増設壁補強工事の合 理化工法として開発された¹⁾²⁾。建物の使用を中断するこ となく狭小な場所でも工事が可能であり、かつ工期を短 縮できるなどの特長がある。2014年3月時点で約5400m² の施工実績がある。

2010年には既存壁に接して RM 耐震壁を設ける「RM 増打ち工法」、さらに既存躯体と RM 耐震壁との接合に接 着剤を用い無騒音施工を可能にする「RM 接着工法」を開 発した³⁾。

本報告では、接着工法によるドア開口付き増設壁およ び増打ち壁を適用範囲に含めるために行った実験の結果 について述べる。

図-1 RM 耐震補強工法の概要

*1技術研究所構造研究グループ

2. 実験概要

2.1 試験体

試験体の一覧を表-1に、配筋詳細を図-2に示す。 試験体は、接着工法によるドア開口付き増設壁試験体: RM-SD と接着工法による増打ち壁試験体: RM-MS の 2 体である。

RM-SD は、1 層 1 スパンの RC 柱梁架構内に、ドア開 口を有する RM 増設壁を構築した縮小率 1/3 相当の試験 体である。RC 柱梁架構と RM 壁板との接合は接着工法と

封驗休夕		柱		上部梁				
- 予約 (平) 石	b×D	主筋	帯筋	b×D	主筋	肋筋		
RM-SD	250 ×	12-D13	2-D6 @100	250 ×	上下 4-D19	2-D13 @ @100		
KM-MS 共通	250 (mm)	(pt= 0.73%)	(pw= 0.24%)	400 (mm)	(pt= 0.81%	(pw= 5) 0.65%)		
きをしたり			RM埠	設壁				
 歌 卿 伊 名	壁厚	縦筋	横筋	開] []	開口補強		
RM-SD	100 (mm)	1-D13 @200 (pw= 0.25%)	1-D10 @100 (pw= 0.24%)	W: H: (n	:400 600 nm)	縦・横共 1-D13		
封驗休夕		既存壁	4	I	「ち壁			
	壁厚	縦筋	横筋	壁厚	縦筋	横筋		
RM-MS	60 (mm)	1-D6 @150 (pw= 0.25%)	1-D6 @150 (pw= 0.24%)	100 (mm)	1-D13 @200 (pw= 0.25%	3 1-D10 0 @100 : (pw= :) 0.24%)		

表一1 試験体一覧

した。梁面に異形筋スタッドを溶接した鋼板をエポキシ樹 脂で接着し、異形筋スタッドによって RM 壁板への定着を 行った。

RM-MS は、1 層 1 スパンの RC 両側柱付き耐力壁に、 RM 増打ち壁を構築した試験体である。RC 柱梁架構と RM 増打ち壁板との接合は接着工法とし、既存壁と RM 耐震壁 は接合していない。

RM-SD、RM-MS ともに、柱壁間の接合部には鋼板を設 置せず、柱面は目荒らしによる表面処理のみとした。

梁壁間の接合部は、以下のように共通の仕様(図-3) とした。

(a) 接合プレート

上下の梁に接着する鋼板は、幅100mm、板厚6mmとし、 接着面をショットブラスト処理し、防錆塗料を塗布した。 壁板側の面には、壁板との定着用に異形筋スタッドを溶接 した。異形筋スタッドの量は最大せん断耐力に対して降伏 しないように設定した。

(b) 梁面の処理と接着方法

既存躯体の梁側の接着面の脆弱層をグラインダーで除 去し、エポキシ樹脂で鋼板の貼付けを行った。既存躯体に 打設した仮止め用のアンカーボルトで締め付けを行い、既 存躯体と鋼板を十分に密着させた。

(c) 柱面の処理

既存躯体の柱側の接合部に、面積比15%程度の目荒しを 行った。

実験に使用した材料の試験結果を表-2に示す。RM 壁 体の圧縮強度はRMユニットを3段に重ねモルタルを充填 した無筋プリズム試験体の圧縮強度である。

2.2 載荷方法

載荷装置を図-4に示す。試験体両 側の柱の頂部に、柱軸力比 0.2 の一定 軸力 (Nc=0.2 σ_B ・BD)を載荷し、試 験体上部梁を油圧ジャッキで左右に 押し引きした。載荷にあたって、左右 のジャッキの荷重が等しくなるよう に制御した。載荷スケジュールは、目 標層間変形角 R=±(0.5, 2, 5, 10, 15, 20)/1000rad.に対し、0.5~5/1000rad.ま では各 3 回、10/1000rad.以降は各 2 回 の正負繰り返し載荷とした。層間変形 角 R は R= δ h/H (δ h:基礎梁上面に対 する水平力加力位置の水平変位、H: 加力点高さ)と定義した。

表-2 材料試験結果

(a) コンクリート・モルタル・RM 壁体

体田如片	圧縮強度	静弹性係数		
使用部位	σ в (N/mm ²)	$Ec (\times 10^4 N/mm^2)$		
既存部コンクリート	16.8	2.61		
壁体部充填モルタル	70.8	—		
梁下無収縮モルタル	66	—		
目地モルタル	53.3	—		
RM壁体(プリズム圧縮強度)	26.5	2.13		

(b) 鉄筋

使用如位	尔	十十万万	降伏強度	引張強度	
使用即应	侄	材員	σ y (N/mm ²)	σ υ (N/mm ²)	
柱主筋 梁あばら筋 RM壁縦筋 RM壁開口補強筋	D13	SD295A	369	523	
RM壁横筋	D10	SD295A	378	514	
柱帯筋 既存壁縦横筋	D6	SD295A	381	531	

図-4 載荷装置

3. 実験結果

3.1 ドア開口付き増設壁試験体: RM-SD

RM-SD の荷重変形関係を図-5に、試験体の最終状況 を写真-1に示す。試験体は変形角 R=5/1000 で最大荷重 となり、R=7/1000 で柱主筋が引張降伏し、変形の増大と ともに耐力が低下した。また、最大耐力時に引張側となる RM 壁体の壁脚に約 5.0mm のすべりが発生した。最終破 壊形式は、壁のせん断破壊である。

変形角(1/1000)

図-5 荷重-変形関係(RM-SD)

各種耐力計算値と実験値の比較を**表**-3に示す。ここで、 最大耐力時に引張側となる RM 壁体の壁脚にすべりが発 生したことから、接着工法による増設耐震壁の終局せん断 耐力³⁾の他に、図-6に示すように引張側の壁脚がすべり、 圧縮側のそで壁と柱がせん断破壊となる破壊モードを考 慮した耐力: aQ_{su3} を示した。せん断終局強度は aQ_{su3} によ って決まり、 aQ_{su3} に対する実験時最大耐力 Q_{max} の比: $Q_{max'a}Q_{su3}$ は 1.42 となった。

写真-1 試験体最終状況

表-3 耐力一覧

	計算値											実験結果			
試験体	r	wQsu (kN)	wQ'su (kN)	αQ _c (kN)	aQ _{su1} (kN)	Q _j (kN)	_p Q _c (kN)	aQ _{su2} (kN)	Q' _j (kN)	wQ'sul (kN)	_a Q _{su3} (kN)	wQ _{mu} (kN)	Q _{max} (kN)	Q _{max} / _a Q _{su3}	Q _{max} / _w Q _{mu}
RM-SD	0.63	416	266	86	438	117	226	429	58	133	363	1185	514	1.42	0.43

 $_{w}Q_{w}:-$ 体打ち壁としての終局せん断耐力

$${}_{w}Q_{su} = r \cdot \left\{ \frac{0.053p_{le}^{0.23}(18 + F_{c}')}{M/(Q \cdot \ell) + 0.12} + 0.85\sqrt{p_{se} \cdot \sigma_{wy}} + 0.1\sigma_{0e} \right\} \cdot b_{e} \cdot j$$

 $_{a}Q_{sul}: RM 壁板と左右の柱のせん断耐力の和$

 $_{\alpha}Q_{su1} = _{w}Q'_{su} + 2 \cdot \alpha \cdot Q_{c}$

 $_{a}Q_{su2}$:RM 壁板と梁との接合部の耐力を考慮した終局せん断耐力

$${}_aQ_{su2} = Q_j + {}_pQ_c + \alpha \cdot Q_c$$

aQ{yu3}:接着工法ドア開口で壁脚がすべる場合の耐力(右図)

 $_{a}Q_{su3} = Q'_{i} + _{w}Q'_{su1} + 2 \cdot \alpha \cdot Q_{c}$

 Q_{max} :実験時最大耐力(R=5/1000時)

注)式中の符号は、以下を除いて文献4)による。

 F'_c :断面積比で重み付けをしたコンクリート圧縮強度の平均値 (N/mm²)

 $Q_j = 0.08F_{cl}A_b$:梁下面と壁板間の接合耐力、 A_b :接着接合面の面積 (mm²)、 F_{cl} :既存躯体コンクリートの設計用圧縮強度 (N/mm²)

 $_{p}Q_{c}$:引張側柱頭部のパンチングシア耐力、 Q_{c} :片側柱の終局耐力、 α :変形状態を考慮した低減係数

 ${}_{w}Q'_{su}: \mathbf{RM} 壁板(内のり部分)のせん断終局強度 wQ_{su} = \max(p_{w} \cdot \sigma_{wy}, F_{cm}/20 + 0.5 \cdot p_{w} \cdot \sigma_{wy}) \cdot t_{w2} \cdot \ell_{w0}$

 F_{cm} : RM 壁板の設計基準強度 (N/mm²)、 p_w , σ_{wy} : RM 壁板の壁筋比および壁筋の設計用降伏強度 (N/mm²)

3.2 増打ち壁試験体: RM-MS

RM-MSの荷重変形関係を図-7に、試験体の最終状況 を写真-2に示す。R=5/1000 時のひび割れ状況を図-8 に、R=5/1000 までの既存 RC 壁と RM 増打ち壁の横筋の ひずみの推移を図-9に示す。

試験体は変形角 R=8/1000 で柱主筋が引張降伏、 R=10/1000 で最大荷重となり、変形の増大とともに耐力が 低下した。RM 壁板と既存梁との接着接合部にすべりは見 られなかった。最終破壊状況は既存 RC 壁および RM 増打 ち壁のせん断破壊である。

R=5/1000 時の最大ひび割れ幅(図-8)は、RM 増打ち 壁側:0.4mm に対し、既存 RC 壁側:0.7mm となり、既存 RC 壁部のひび割れ幅が大きくなった。

既存 RC 壁と RM 増打ち壁の壁横筋ひずみの推移の比較 を図-9に示す。壁中央部の横筋のひずみ(RM 増打ち 部: RH2、既存 RC 壁部: WH2)は、R=1/1000 までと

【RM 増打ち壁側】

R=4/1000以降ではRM増打ち壁(RH2)が既存RC壁(WH2) よりも大きくなったが、R=2/1000から4/1000までの推移 はほぼ一致した。柱周辺部のWH1とRH1を比較すると、 R=1/1000から3/1000までのひずみの増加にやや差が見ら

【既存 RC 壁側】

写真-2 試験体最終状況

図-9 R=5/1000 までの RC 壁と RM 壁の横筋のひずみの推移

表一4 耐力一覧

			実験結果						
試験体	wQsu1	wQ _{mu1}	wQ'su2	Qj	wQsu	wQmu	Q _{max}	Q _{max}	Q_{max}
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	$/_{\rm w} Q_{\rm su}$	$/_{\rm w} Q_{\rm mu}$
RM-MS	436	1268	260	188	696	1268	1014	1.46	0.80

れるものの、変形角 R=3/1000 から R=5/1000 までのひずみ は 1000μ前後ではほぼ一定であった。載荷初期での既存 RC 壁と RM 増打ち壁の壁横筋のひずみはほぼ同程度であ り、RM 増打ち壁部分に全体変形角に応じた荷重が伝達さ れていることがわかる。

各種耐力計算値と実験値の比較を表-4に示す。増打ち 壁の終局せん断耐力は、文献⁵⁾による RC 増打ち壁の耐力 評価方法を参考にして、図-10 に示すように既存壁の終 局せん断耐力と RM 増打ち壁 (内のり部分)のせん断耐力 を足し合わせることによって評価した。耐力計算値: $_wQ_{su}$ に対する実験時最大耐力 Q_{max} の比: $Q_{max/w}Q_{su}$ は 1.46 とな った。

4. まとめ

RM 耐震補強工法の接着工法によるドア開口付き増 設壁および増打ち壁のフレーム実験を行い、以下の事項 を確認した。

- (1)ドア開口付き増設壁では、接着工法に よる増設耐震壁の終局せん断耐力の他、 引張側の壁脚がすべり、圧縮側のそで 壁と柱がせん断破壊となる破壊モード を考慮することによって、終局せん断 耐力を安全側に評価できる。
- (2) 増打ち壁は、既存 RC 壁の終局せん断 耐力と増打ち RM 壁のせん断耐力を足 し合わせることによって、終局せん断 耐力を安全側に評価できる。

 $_{
m w}Q_{
m sul}: 文献 4)$ による補強前の終局せん断耐力

"Q_{mul}:文献⁴⁾による補強前の曲げ終局時せん断力

 $_{w}Q'_{su2}: RM 壁板(内のり部分)のせん断耐力$

Q: : 梁面と RM 壁板間の接合耐力

 $_{w}Q_{su}: 補強後の終局せん断耐力 (_{w}Q_{su1}+_{w}Q'_{su2})$

 $_{w}Q_{mu}$:補強後の曲げ終局時せん断力(= $_{w}Q_{mu}$)

Q_{max}:実験時最大耐力(R=10/1000時)

注)式中の符号は、以下を除いて文献³⁾による。

$$\begin{split} & {}_{w} Q_{su2}^{\prime} = \tau_{su2}^{\prime} \cdot t_{w2} \cdot \ell_{w0} \\ & \tau_{su2}^{\prime} = F_{cm} / 20 + 0.5 \cdot p_{w2} \cdot \sigma_{wy2} \leq 3.0 \\ & F_{cm} : \text{RM 壁板の設計基準強度 (N/mm2)} \end{split}$$

^p^{w2}:RM 壁板の壁筋比

 σ_{wy^2} : 壁筋の設計用降伏強度 (N/mm²)

^{*t*}_{w2}: RM 壁板の厚さ (mm)

^ℓ_{w0}: 壁板の内法長さ(mm)

 $Q_t = 0.08F_{c1}A_t$:梁下面と壁板間の接合耐力

 A_b :接着接合面の面積 (mm²)

 F_{c1} :既存躯体コンクリートの設計用圧縮強度 (N/mm²)

図-10 増打ち壁の終局せん断耐力

[謝 辞]

本研究は、RM 耐震補強研究会(株式会社淺沼組、株式 会社新井組、株式会社松村組、太陽サーブ株式会社)によ って行われた。関係各位に謝意を表します。

[参考文献]

- 森浩二,井上重信,中澤敏樹:RM ユニットを用いた 増設耐震壁補強工法の開発,淺沼組技術研究所報, No.15, p.21, 2003.11.
- 2) 森浩二,井上重信,中澤敏樹: RM ユニットを用いた 増設耐震壁補強工法の開発 その 2 開口を有する増 設耐震壁,淺沼組技術研究所報, No.19, p.1, 2007.11.
- 3) 森浩二,中澤敏樹,山下勝司:RM ユニットを用いた 増設耐震壁補強工法の開発 その3 増打ち壁による 補強工法およびエポキシ樹脂による接着接合,淺沼組 技術研究所報, No.22, p.2, 2010.11.
- 4)日本建築防災協会:既存鉄筋コンクリート造建築物の 耐震改修設計指針 同解説,日本建築防災協会,2001.
- 5)日本建築総合試験所:鉄筋コンクリート増設壁耐震補 強設計・施工指針、2001年9月