2. L 字形柱 SRC 梁 S 接合部の構造性能に関する実験的研究

Experimental Study on Structural Performance of L-shape Joint with SRC-Column and S-Beam

山内 豊英*1 井上 重信*2 橋本 拓*3

要旨

柱鉄骨量の少ないL字形の柱SRC梁S接合部試験体による構造実験を行い、最大耐力、変形性能および柱主筋の定着性能等を確認した。実験した全ての試験体が最終的には柱主筋の定着部で破壊したが、最大耐力、変形性能はともに設計目標値を満足した。さらに、実験因子とした柱鉄骨の軸方向、柱主筋の定着長さによって、最大耐力、 変形性能に顕著な差は見られなかった。

また、せん断補強筋形式のL字形柱 RC 梁 S 接合部に関する既往実験と比較を行った結果、柱 SRC 梁 S 接合部 は、柱鉄骨の存在に起因して柱主筋の定着部破壊が遅延するため、同形状の柱 RC 梁 S 接合部よりも優れた構造性 能を示すことがわかった。

キーワード: 柱 SRC 梁 S 接合部/L 字形接合部/混合構造/定着性能

1. はじめに

物流倉庫やスーパーマーケットなど、階高が高く大ス パン架構の建築物には、鉄骨造(以下、S造と称す)を採 用することが多い。しかし、S造は、溶接施工、耐火被覆、 柱脚処理などのコストアップ要因となる作業が多いため、 近年、施工性・経済性に優れた混合構造構法が注目され ている。そこで、筆者らは、軸力に強く剛性が高い鉄筋 コンクリート造(以下、RC造と称す)の柱と、大スパン 架構に対応できるS造の梁を組合せた「柱 RC梁Sハイ ブリッド構法(以下、RCS構法と称す)」を開発し、既報 ^{1)~3)}において報告を行った。

RCS 構法は、柱を RC 造とすることで鉄骨量を大幅に 減少させることができるため、コスト面では有利になる 場合が多い。しかし、柱にコンクリートを打設するまで 上階を支持できないことから、施工法がフロア毎に積み 上げていく積層工法となるため、柱梁架構の先行施工が 可能な S 造と比較して、工期面では不利になるという問 題がある。

このような RCS 構法における工期面での短所を補う構 法として考えられるのが、柱を鉄骨鉄筋コンクリート造 (以下、SRC 造と称す)、梁を S 造とした柱 SRC 梁 S 接 合部構法である。柱を SRC 造とすることにより、鉄骨部 分の先行施工が可能となり、工期的にも S 造と同等程度 になる可能性がある。この場合、RCS 構法のコスト面で の有利性を維持するためには、当然、柱に内蔵する鉄骨 を極力小さくする必要がある。

一方、柱を SRC 造、梁を S 造とするディテールは、日本建築学会「鉄骨鉄筋コンクリート構造計算規準・同解

説」⁴⁾(以下、SRC規準と称す)の適用範囲内とされてい る。同規準の 20 条には、梁鉄骨の曲げ耐力の和 $_{SB}M_A$ に 対する柱鉄骨の曲げ耐力の和 $_{SC}M_A$ の比率(以下、 $_{SC}M_A/_{SB}M_A$ と称す)が 0.4 以上(かつ、2.5 以下)であれば、 応力伝達に対する安全性の検証を省略できるとされてい る。つまり、 $_{SC}M_A/_{SB}M_A$ が 0.4 未満となる場合は、何らか の安全性の検証を行わない限り、SRC 柱としての曲げ耐 力を十分保有していても、柱鉄骨断面を大きくする等の 対策を施す必要が生じる。このように、SRC 規準におけ る 20 条の規定は、実質柱鉄骨の断面に対する制限規定と なっている。

これまで、 scM_A/sbM_A が 0.4 未満となるような柱鉄骨量 の少ない柱 SRC 梁 S 接合部試験体を用いた構造実験が数 多く行われており 5^{-10} 、支圧抵抗機構等を考慮すること により、十分な耐力と変形性能を確保できることが示さ れている。しかし、殆どの実験が十字形接合部の試験体 によるものであり、最上階の L 字形接合部試験体で構造 性能を確認した例は見当たらない。L 字形接合部は、柱 梁接合部のせん断耐力だけでなく、柱主筋の定着性能も 問題となるため、接合部としては最も構造的に不利な条 件下にあると考えられる。

本研究では、scM₄/sbM₄が 0.4 未満となる L 字形柱 SRC 梁 S 接合部の試験体を用いて構造実験を行い、柱鉄骨量の少ない柱 SRC 梁 S 接合部の構造性能について調べた。また、L 字形柱 RC 梁 S 接合部に関する既往研究との比較を行い、柱鉄骨が構造性能に及ぼす影響についても検討を行った。

2. 実験計画

2.1 試験体

試験体諸元を表-1、試験体の形状寸法と配筋を図-1 に示す。実建物スケールの約 1/2 とし、全てせん断補強 筋形式のL字形接合部試験体とした。柱梁接合部内を貫 通する直交梁を設け、梁鉄骨と柱梁接合部との境界に支

圧板を配置した。鉄骨梁の柱梁接合部内への埋め込み長 さは、柱せいの 90%(405mm)とし、埋め込み端部にも支 圧板を設けた。柱主筋の定着には、機械式定着工法を採 用し、定着板と梁鉄骨の上フランジとの間に定着部拘束 筋を配筋した。また、梁鉄骨の浮き上がりを防止するた め、柱梁接合部内に逆 U 字形のかんざし筋を配筋した。

[SL2-S-A]

PL-25×670×670

柱鉄骨(強軸) H-150×150×7×10

12-D19

822.

277.

822.

2-D10@55

12-D19

柱鉄骨(弱軸) H-150×150×7×10

(寸法単位:mm)

PL-25×670×670

[SL2-W-A]

実験因子は、柱鉄骨の軸方向、柱主筋の定着長さであ り、全試験体とも柱曲げ降伏後の柱主筋定着部破壊とな るよう設計した。

試験体に使用したコンクリート、鉄筋および鋼板の材 料試験結果を**表-2~表-4** に示す。なお、**表-1** の $s_{C}M_{A}/s_{B}M_{A}$ の値は、材料試験結果を用いて算定した。

2.2 実験方法

本実験は、図-2に示すように、L字形試験体の梁先端 に両側ピン付き反力受け柱を取り付けた3ヒンジラーメ

表-2 コンクリートの材料試験結果

· B	- 60	L _C	o _t
(N/mm^2)	$(\times 10^{-3})$	(kN/mm^2)	(N/mm^2)
34.4	1.97	30.3	3.35

 σ_{B} : 圧縮強度, ϵ_{co} : σ_{B} 時ひずみ度 E_c: ヤング係数, σ_{t} : 割裂強度

表-3 鉄筋の材料試験結果

使用 部位	呼び名	鋼種	σ_y (N/mm ²)	$\sigma_{\rm u}$ (N/mm ²)	伸び (%)
柱主筋	D19	SD390	449	645	21
柱帯筋	D10		367	553	27
かん ざし筋	D10	SDOOFA	362	511	30
接合部 補強筋	D6	5D295A	442	539	23
定着部 拘束筋	D10		367	553	27

 σ_{y} :降伏点, σ_{u} :引張強度

ン架構の梁材軸位置に、押し引き型油圧ジャッキで水平 力を加えて行った。その際、L字形接合部が閉じる方向を 正加力、その逆を負加力とした。この場合、正加力側に は柱、梁にそれぞれ圧縮力が作用し、負加力時には引張 力が作用する。載荷履歴は、目標層間変形角 *R*=5,10,20,30,40,60(×10⁻³rad.)での2サイクルずつの正負交 番繰返し載荷とし、その後、正方向への単調載荷とした。 実験での測定項目を**表**-5 に示す。

表-4 鋼板の材料試験結果

使	用箇所	使用 試験体	公称 厚さ	材質	σ_y (N/mm ²)	σ_u (N/mm ²)	伸び (%)
フラ ンジ 中 デ グ エ ブ	フラ	SL1-S-A SL1-W-A	DI _16	SS400	278	442	31
	SL2-S-A SL2-W-A	PL-16	SN490B	368	534	26	
	カーブ	SL1-S-A SL1-W-A	PI –0	SS400	331	456	30
	SL2-S-A SL2-W-A	FL-9	SN490B	387	540	25	
柱 H	フラ ンジ	全試験体	PL-10	55400	311	454	31
形鋼ウ	ウェブ	全試験体	PL-7	55400	334	464	28

 σ_{y} :降伏点, σ_{u} :引張強度

表-5 測定項目

変位量	層間変形角、柱および接合部の変形量
ひずみ	柱主筋、柱横補強筋、接合部横補強筋 かんざし筋、梁鉄骨フランジおよびウェブ
荷重	柱せん断力

図-2 実験装置

3. 実験結果および考察

3.1 荷重-変形関係および破壊状況

各試験体の柱せん断力 Q_cと層間変形角 R の関係を図-3 に示す。図中には、実験中に観察された主な発生現象、 最大耐力 _cQ_{max}、最大耐力時層間変形角 R_{max}および限界層 間変形角 R₈₀を併記した。限界層間変形角 R₈₀は、Q_cが cQ_{max}の 80%に低下した時の層間変形角として定義した。

図からわかるように、各試験体ともに、*R*=0.9~ 1.5×10⁻³rad.時に柱頭部に曲げひび割れ、*R*=5.6~ 8.0×10⁻³rad.時に接合部せん断ひび割れが発生した。接合 部せん断ひび割れは、**写真-1(a)**に示すように、引張側 柱主筋近傍のせん断ひび割れ①がまず発生し、その後、 直交梁をまたいで柱主筋圧縮側へ伸びるせん断ひび割れ

発生現象記号

【柱】CFC:柱頭部曲げひび割れ

CS:梁鉄骨下フランジ直下の柱頭部コンクリートの圧壊 CTY:柱主筋の引張降伏 CFTY:柱鉄骨フランジの引張降伏

②、柱主筋圧縮側のせん断ひび割れ③が発生した。次に、 柱鉄骨軸方向に係わらず、 $R=8.0 \sim 13.0 \times 10^{-3}$ rad.で柱鉄骨 フランジが引張降伏し、耐力は上昇を続けた。 $R=20 \times 10^{-3}$ rad.前後で加力梁下フランジ側にコンクリート の圧壊が生じ、 $R=20.1 \sim 30.2 \times 10^{-3}$ rad.で最大耐力に達した。 その後、**写真-1**(b)に示すように、柱主筋に沿う付着割 裂ひび割れ⑦および柱主筋定着端部近傍の水平ひび割れ ⑥が進展し、耐力が低下した。限界層間変形角 R_{80} は、37.9 $\sim 46.2 \times 10^{-3}$ rad.であった。柱主筋の引張降伏は、試験体 SL1-S-A, SL2-W-A ではほぼ最大耐力時、その他の2試験 体では R_{80} を超えてから発生した。**写真-1**に示すように、 顕著な付着割裂ひび割れが観察されたことから、破壊形 式は柱主筋の定着部破壊と判別した。

【柱梁接合部】

SC: せん断ひび割れ
 HTY:接合部帯筋の引張降伏
 SCTY:定着部拘束筋の引張降伏
 CFTY: 柱梁接合部鉄骨ウェブの引張降伏

図-3 荷重-変形関係

①~③ 接合部せん断ひび割れの進展方向、④ 柱頭部の曲げひび割れ、⑤ 柱頭部のせん断ひび割れ⑥ 柱主筋定着部近傍の水平ひび割れ、⑦ 柱主筋に沿う付着割裂ひび割れ

写真-1 。Q_{max}時および R₈₀時のひび割れ状況

3.2 包絡線の比較

各試験体における実験時の柱せん断力 Q_cを柱曲げ終局 耐力時の柱せん断力計算値 Q_{cu} で無次元化した Q_c/Q_{cu} と、 層間変形角 R との関係を包絡線で表し、柱鉄骨軸方向、 柱主筋定着長さで比較したものを図-4 に示す。ただし、 柱鉄骨軸方向の影響を比較するために、弱軸方向試験体 SL1-W-A および SL2-W-A についても、他の実験因子が共 通の強軸方向試験体 SL1-S-A および SL2-S-A の Q_{cu} で Q_c を無次元化した。

なお、柱曲げ終局耐力時の柱せん断力 Q_{cu}は、日本建築 総合試験所「機械式鉄筋定着工法設計指針」¹¹⁾の研究資 料8に示された算定式に準じた式(1)により算定した。

$Q_{cu} = 2(rM_{cuo}/\eta_c + M_{pc})/h'$	(1)
---	-----

- ${}_{r}M_{cuo} = 0.9a_{ct} \cdot d_{c} \cdot \sigma_{ry} \tag{2}$
 - $\eta_c = 1 \mp (j_{tce}/h') \cdot (h/l) \tag{3}$
 - $j_{tce} = (a_{ct} \cdot j_{tc} + A_{fc} \cdot s_C d) / (a_{ct} + A_{fc})$ (4)

式(1)~(4)の各記号の説明を下記に示す。式(3)右辺の符 合は、L字形が閉じる正加力時には-、L字形が開く負加 力時には+とする。

rMcuo: 柱 RC 部の基準曲げ終局耐力

- Mpc: SRC 柱鉄骨部の全塑性モーメント
- h':内法階高さ、 $d_c=_{C}D-C_r$:柱 RC 部の有効せい
- $_{\rm C}D: 柱せい、<math>C_r: 引張側柱主筋重心のかぶり厚さ$
- jtce:SRC 柱の等価応力中心距離
- act: 柱引張側主筋の断面積
- Afc: SRC 柱鉄骨フランジの断面積
- j_{tc}: 柱両側主筋の重心間距離、 σ_{ry}: 柱主筋の降伏強度
- scD: 柱鉄骨せい、fct: 柱鉄骨フランジの厚さ
- scd=scD-fct: 柱鉄骨両側フランジの中心間距離

各記号と柱梁接合部の各部諸元との対応を図-5 に示し、計算結果と実験の最大耐力との関係を表-6 に示す。

(1) 柱鉄骨軸方向の影響

図-3のQ_c-R関係では、強軸方向試験体の履歴ループ 面積が弱軸方向試験体よりも大きく、柱鉄骨軸方向によ る差が見られた。しかし、図-4(a)に示すように、定着 長さの長いSL1シリーズ試験体において強軸方向試験体 の最大耐力が僅かに大きくなった程度で、最大耐力およ び変形性能に顕著な差異は認められなかった。また、写 真-1に示すように、ひび割れ状況にも、柱鉄骨軸方向に よる差異は認められなかった。

図-5 L字形柱 SRC 梁 S 接合部の各部諸元

本実験では、柱鉄骨断面が小さく、幅およびせいが同 じであるため、軸力の小さい範囲では、柱曲げ終局耐力 の柱鉄骨軸方向による差異は現れなかったと考えられる。

(2) 柱主筋定着長さの影響

図-4(b)に示すように、強軸方向試験体において、定 着長さ *l_{ac}*=24.6*d_b*の SL1-S-A の最大耐力が *l_{ac}*=21.2*d_b*の SL2-S-A よりも僅かに大きくなった程度で、柱主筋定着 長さによる顕著な差異は認められなかった。**写真-1**に示 すように、ひび割れ状況にも差異は認められなかった。 これは、柱鉄骨の存在により柱主筋の定着部破壊が遅延 したため、柱主筋定着長さによる差異が明瞭に現れなか ったものと考えられる。

表-6 実験の最大耐力と柱曲げ終局耐力計算値の関係

	最大	最大耐力		柱曲げ終局時			
試験体	c Q max		Q_{cu}		$_{c}Q_{max}/Q_{cu}$		
	(k	N)	(kN)				
	正方向	負方向	正方向	負方向	正方向	負方向	
SL1-S-A	435	377	369	331	1.18	1.14	
SL1-W-A	396	357	328	290	1.21	1.23	
SL2-S-A	380	326	357	321	1.06	1.02	
SL2-W-A	376	330	317	281	1.19	1.17	
・ の お上びの の色玉向け絶対値で表示							

 $k_c Q_{max}$ および Q_{cu} の負方向は絶対値で表示

図-4 Q_c/Q_{cu}-R 関係包絡線(正加力時)

4. 柱主筋の定着性能に関する検討

本実験における柱主筋の定着性能について、既往実験 との比較検討を行う。ただし、L字形柱 SRC 梁 S 試験体 による既往実験がないため、せん断補強筋形式のL字形 柱 RC 梁 S 接合部試験体による既往実験^{12),13)}を用いた。 検討対象とした試験体を表-7に示す。なお、文献 13)に おける実験では、架構形状、断面形状、配筋、試験体を 構成する材料の強度が、本実験の SL1 シリーズとほぼ同 ーのL字形柱 RC 梁 S 接合部試験体を使用しており、柱 鉄骨の有無による影響を直接比較することが可能である。

なお、以下の検討において用いる必要定着長さ *l_{ab}* は、 日本建築学会「鉄筋コンクリート構造計算規準・同解説」 ¹⁴⁾における異形鉄筋の必要定着長さ算定式に準じた式(5) により算定した。

$$l_{ab} = \alpha_b \cdot \frac{S \cdot \sigma_l \cdot d_b}{10 \cdot f_b} \tag{5}$$

式(5)の各記号の説明を下記に示す。

*a*_b: せん断補強筋形式の拘束力を考慮し1.25

S: 必要定着長さの修正係数で 0.7

 σ_t :柱主筋の降伏応力度

d_b: 柱主筋の呼び名に用いた数値、

f_b:付着割裂の規準となる強度 f_b=F_c/40+0.9

(ここでは、Fcに材料試験結果を用いた。)

柱主筋	試験	本本	凡	例			
定着方法	体数	又厭	既往実験	本実験			
直線定着	1	(12)					
機械式定着	6	(13),本実験	0				

7 大中陸し町分中陸の計陸仕し口向

破壊形式:全ての試験体が柱主筋の定着部破壊

(1) 終局耐力と定着長さの関係

図-6 に、 $cQ_{max}/Q_{cu} \ge l_{ac}/l_{ab}$ (実定着長さ/必要定着長さ) との関係を示す。同図によると、機械式定着工法の柱 RC 梁 S 接合部試験体(〇:文献 13) は、 l_{ac}/l_{ab} が 1 以上を示 しているものの、いずれも定着破壊し $cQ_{max}/Q_{cu} < 1 \ge tac$ っ ていることがわかる。一方、柱 SRC 梁 S 接合部試験体は、 l_{ac}/l_{ab} が 0.95 程度のものも含め、全ての試験体が cQ_{max}/Q_{cu} >1 となっていることがわかる。

(2) 変形性能と定着長さの関係

*R*₈₀-*l_{ac}/l_{ab}*関係を図-7に示す。図中には、日本建築学 会「鉄筋コンクリート造建物の靭性保証型耐震設計指 針・同解説」¹⁵による RC 柱の終局限界状態の部材角目安 値(1/67)を2倍した *R*=3/100 を破線で示した。

図-7によると、機械式定着工法の柱 RC 梁 S 接合部試 験体(\bigcirc : 文献 13) は、いずれも $R_{80} < 30 \times 10^{-3}$ rad.となっ ており、要求される変形性能を満足していない。一方、 柱 SRC 梁 S 接合部試験体は、 l_{ac}/l_{ab} が 0.95 程度のものも 含めて R_{80} が 40×10⁻³rad.前後を示しており、全ての試験体 が $R_{80} > 30 \times 10^{-3}$ rad.の変形性能を有していることがわかる。

柱 RC 梁 S 接合部試験体の既往実験との比較から、耐力、変形性能ともに柱 SRC 梁 S 接合部の方が優れている ことがわかった。柱 SRC 梁 S 接合部では、柱鉄骨が応力 を負担することにより、コンクリートの破壊が抑制され、 定着部破壊が遅延しているものと推測される。

以上より、L字形柱 SRC 梁 S 接合部においては、柱主 筋の定着長さを式(5)で算定される値以上とすることによ り、設計で目標とする終局耐力および変形性能が確保で きると考えられる。

5. まとめ

柱鉄骨量の少ない L 字形柱 SRC 梁 S 接合部試験体 (*scM_A/sbM_A* が 0.1~0.2 程度)の構造実験から、以下のこ とがわかった。

- 全試験体において柱主筋の引張降伏が見られたが、 柱主筋に沿う顕著な付着割裂ひび割れが観察され た。したがって、試験体の破壊形式は、柱主筋の 定着部破壊と判別した。
- 2) 全試験体において柱主筋の定着部破壊となったが、 最大耐力は柱の曲げ終局耐力計算値を上回り、限 界層間変形角 R₈₀は 30×10⁻³rad.以上を示した。
- 3) 履歴ループ面積は、柱鉄骨が弱軸方向の試験体よりも強軸方向試験体の方が大きく、軸方向によって差が生じた。一方、最大耐力および変形性能において、柱鉄骨軸方向、柱主筋定着長さによる顕著な差は見られなかった。
- 4) 柱 RC 梁 S 接合部の既往実験との比較検討の結果、 柱 SRC 梁 S 接合部は、柱鉄骨の存在に起因して柱 主筋の定着部破壊が遅延するため、同形状の柱 RC 梁 S 接合部よりも優れた構造性能を示すことがわ かった。

[謝 辞]

本実験は、RCS ハイブリッド構法研究会(青木あすな ろ建設、淺沼組(代表会社)、奥村組、西武建設、大末建 設、東亜建設工業、西松建設、ハザマ、長谷エコーポレ ーションで構成)とダイワスチール株式会社の共同研究 で行われました。ご尽力頂きました関係者各位に謝意を 表します。また、実験から考察に至るまで様々なご指導、 ご教示およびご尽力を頂きました一般社団法人 建築構 造技術支援機構の益尾潔理事・工博、財団法人 日本建築 総合試験所の足立将人主査・博士(工学)、市岡有香子氏・ 博士(工学)、並びに、同試験所の皆様に謝意を表します。

[参考文献]

- 1) 樋渡健、竹内健一、井上重信、小田初次、飯塚信一、 中岡章郎、堂下航:高強度材料を用いた柱 RC 梁 S ハイブリッド構法に関する実験的研究(その1)、日 本建築学会大会学術講演梗概集、構造Ⅲ、 pp.1301-1302、2010.9.
- 2) 山内豊英、細矢博、服部俊一、原博、薬研地彰、足 立将人:高強度材料を用いた柱 RC 梁 S ハイブリッ ド構法に関する実験的研究(その2)、日本建築学会 大会学術講演梗概集、構造Ⅲ、pp.1303-1304、2010.9.

- 山内豊英、井上重信、橋本拓:高強度材料を用いた 柱 RC 梁 S ハイブリッド構法に関する実験的研究、 淺沼組技術研究報告 No.22、pp.1-1~1-10、2010.
- 日本建築学会:鉄骨鉄筋コンクリート構造計算規 準・同解説、2001.
- 5) 山下靖彦、岡本達雄、毛井崇博、太田秀彦: 柱鉄骨 量の少ない SRC 柱+S 梁架構の強度性状に関する研 究、日本建築学会大会学術講演梗概集、構造Ⅲ、 pp.1279-1280、2000.9.
- 6) 宮内靖昌、毛井崇博、上村昌之、山本章起久、石出 一郎:帯筋の施工性を向上させた柱 SRC 梁 S 接合部 の力学性状に関する研究、日本建築学会大会学術講 演梗概集、構造Ⅲ、pp.1199-1200、2004.8.
- 7) 大島穣、福知保長、若松慎三:柱 SRC 梁S構増接合部における応力伝達及び耐力評価に関する実験的研究、日本建築学会大会学術講演梗概集、構造Ⅲ、 pp.1101-1102、2001.9.
- 8) 若松慎三、福知保長、大島穣:柱 SRC 梁 S 構増接合 部における応力伝達に関する実験的研究、日本建築 学会大会学術講演梗概集、構造Ⅲ、pp.1085-1086、 2002.8.
- 9) 岡安隆史、福元敏之、富田昭夫、福田孝晴、河野賢 一、矢口卓郎:小さなH形鋼を用いた柱SRC梁S構 造柱梁接合部の実験的研究その1-その2、日本建築 学会大会学術講演梗概集、構造Ⅲ、pp.1281-1284、 2000.9.
- 10) 長谷川則夫、土方勝一郎、大島豊:柱鉄骨量の少な いはりS柱SRC接合部の実験研究その1-その4、日本建築学会大会学術講演梗概集、構造Ⅱ、 pp.1221-1228、1987.10.
- 日本建築総合試験所:機械式鉄筋定着工法 設計指 針(2010年改定)、2010.5.
- 12) 磯雅人、小澤潤治、山本俊彦、豊嶋学: RC 柱・S 造はりで構成される合成架構に関する研究(その 4)、 日本建築学会大会学術講演梗概集、構造Ⅲ、 pp.945-946、1995.8.
- 日本建築総合試験所:建築技術性能証明評価概要報告書、DSネジプレート定着工法、2011.7.
- 14) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説、2010.
- 15) 日本建築学会:鉄筋コンクリート造建物の靭性保証 型耐震設計指針・同解説、1997.
- 16) 市岡有香子、足立将人、田川浩之、堂下航、益尾潔: L形柱 SRC 梁接合部の構造性能(その1-その2)、日本建築学会大会学術講演梗概集、構造Ⅲ、 pp.1297-1300、2011.8.