# 1. 高強度材料を用いた柱RC梁Sハイブリッド構法に関する実験的研究

Experimental Study on S-beam to RC-column Hybrid-structure using High Strength Materials

山内 豊英\*1 井上 重信\*2 橋本 拓\*3

# 要 旨

柱を剛性の高い鉄筋コンクリート造、梁を大スパンに対応できる鉄骨造とした「柱 RC 梁 S ハイブリッド構法」 の開発を目的とし、柱梁接合部試験体を用いた構造実験を行い、本構法の構造特性を調査した。構造実験の結果、 本構法が強度、靱性ともに優れた性能を保持していることがわかった。また、実験による最大耐力と計算値との 比較を行った結果、実験値と計算値が良い対応を示すことを確認した。更に、柱梁接合部のせん断終局耐力が既 往の設計式に準拠した簡易な式で評価できることを示した。

キーワード: 柱 RC 梁 S/混合構造/柱梁接合部/せん断補強筋形式/ふさぎ板形式

## 1. はじめに

中低層のスーパーマーケットや物流倉庫など階高が高 く大スパン架構の建築物では、一般に鉄骨造(以下、S 造と称す)を採用する場合が多い。しかし、S造において は、溶接施工、耐火被覆、柱脚処理などの作業がコスト アップの要因となるため、近年、施工性・経済性に優れ た混合構造構法が注目されている。混合構造構法の中で も、柱 RC 梁 S 接合部構法は、柱を剛性の高い鉄筋コン クリート造(以下、RC 造と称す)とし、梁を大スパンに 対応できる S 造とすることで、RC 造と S 造それぞれの特 長を生かすことが可能であり、最も合理的な構法の一つ である。 そこで、梁貫通型の柱 RC 梁 S 接合部構法「柱 RC 梁 S ハイブリッド構法」(以下、本構法と称す。)の開発を目 的とし、柱梁接合部の試験体による構造実験を行い、本 構法の構造特性について調べた。柱梁接合部の補強形式 としては、図-1に示すように、接合部をせん断補強筋で 補強する「せん断補強筋形式」、鋼板で補強する「ふさぎ 板形式」の2種類を対象とした。

本報告では、構造実験の概要および実験結果について 述べるとともに、実験値と計算値との比較などを行った 結果について述べる。



\*1技術研究所構造研究グループ \*2技術研究所 \*3東京本店設計部構造グループ

#### 2. 構造実験

# 2.1 試験体

試験体の形状および寸法を図-2に、試験体の諸元を表 -1 に示す。試験体は、実建物の約 1/2.5 の縮尺で設計さ れた十字形、ト字形、T 字形架構である。試験体数は、 それぞれの架構形式について、柱梁接合部をせん断補強 筋で補強し柱梁接合部の境界面に支圧板を設けた「せん |断補強筋形式|、柱梁接合部を鋼板で覆う「ふさぎ板形式| の2体とし、合計6体とした。十字形およびト字形試験 体では、高強度コンクリート Fc=60N/mm<sup>2</sup>、柱主筋に SD490 を用いた場合の構造性能の確認を目的とした。T 字形試験体では、最上階の柱主筋に機械式定着金物を採 用した場合の定着性能の確認を目的とし、ふさぎ板形式 については柱主筋に SD490 を使用した。また、せん断補 強筋形式のト字形試験体 No.5 については、鉄骨梁が建物 外周部に突出しないディテールを想定し、梁鉄骨の柱梁 接合部への埋め込み長さを柱せいおよび幅の 90% (360mm)とした。試験体に使用した鉄筋、鋼板、コン クリートの材料試験結果をそれぞれ表-2~表-4に示す。

表-1 試験体諸元

| 計斷   | 加構          | Fc                   | 柱                             |                                 | 梁                   | 接合部                                               | 想定                                     |                  |  |  |  |  |  |  |  |  |              |
|------|-------------|----------------------|-------------------------------|---------------------------------|---------------------|---------------------------------------------------|----------------------------------------|------------------|--|--|--|--|--|--|--|--|--------------|
| 体    | 形状          | (N/mm <sup>2</sup> ) | 主筋                            | せん断<br>補強筋                      | 断面寸法 (mm)           | 補強形式                                              | 破壊<br>形式                               |                  |  |  |  |  |  |  |  |  |              |
| No.3 | +           |                      | 12-D19<br>(SD490)<br>pg=2.15% | 2-S6@60<br>(KSS785)<br>pw=0.27% | BH-<br>360×130×6×1  |                                                   | せん断補強筋形式<br>2-D6(SD390)×6組<br>pw=0.32% | 接合部<br>せん断<br>破壊 |  |  |  |  |  |  |  |  |              |
| No.4 | 于形          | 60                   |                               |                                 | BH-<br>380×160×6×19 | ふさぎ板形式<br>PL-3.2 (SS400)<br>pw=1.60% <sup>*</sup> |                                        |                  |  |  |  |  |  |  |  |  |              |
| No.5 | ト<br>字<br>形 | 00                   |                               |                                 | 2-86@60             | BH-<br>360×130×6×16                               | せん断補強筋形式<br>2-D6(SD390)×7組<br>pw=0.40% | 梁曲げ              |  |  |  |  |  |  |  |  |              |
| No.6 |             |                      |                               |                                 | BH-<br>380×160×6×19 | ふさぎ板形式<br>PL-3.2(SS400)<br>pw=1.60% <sup>*</sup>  | 破壊                                     |                  |  |  |  |  |  |  |  |  |              |
| No.1 | T<br>字<br>形 | 26                   | 12-D19<br>(SD390)<br>pg=2.15% |                                 | BH-                 | せん断補強筋形式<br>2-D6(SD390)×4組<br>pw=0.32%            | 柱曲げ                                    |                  |  |  |  |  |  |  |  |  |              |
| No.2 |             | 50                   | 12-D19<br>(SD490)<br>pg=2.15% |                                 |                     |                                                   |                                        |                  |  |  |  |  |  |  |  |  | 270×110×6×16 |

共通事項 階高:h=2500mm, スパン:L=3500mm, 柱断面:□-400×400mm \*:ふさぎ板を接合部せん断補強筋として換算した。

| 表 — 2 | 鉄筋の材料試験結果 |
|-------|-----------|
| 1 4   |           |

|           |                  | 呼び  |        | 降伏点                                                                                                                                                                                                                                        | 引張強度       | 伸び |
|-----------|------------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| 使用部位      | 使用試験体            |     | 鋼種     | $\sigma_y$                                                                                                                                                                                                                                 | $\sigma_u$ |    |
|           |                  | Ţ   |        | $\begin{array}{c c} \hline \mu \mu \nu V \lambda m \\ \hline \sigma_y \\ (N/mm^2) \\ \hline (N/mm^2) \\ \hline (N/mm^2) \\ \hline 429 \\ \hline 606 \\ \hline 531 \\ 715 \\ \hline 976 \\ 1196 \\ \hline 353 \\ 571 \\ \hline \end{array}$ | (%)        |    |
| 扩十弦       | No.1             | D19 | SD390  | 429                                                                                                                                                                                                                                        | 606        | 21 |
| 在土肋       | No.2, 3, 4, 5, 6 | D19 | SD490  | 531                                                                                                                                                                                                                                        | 715        | 19 |
| 柱せん断補強筋   | 全試験体             | S6  | KSS785 | 976                                                                                                                                                                                                                                        | 1196       | 12 |
| 接合部せん断補強筋 | No.1, 3, 5       | D4  | SD200  | 252                                                                                                                                                                                                                                        | 571        | 27 |
| 定着部拘束筋    | No.1, 2          | D0  | 3D390  | 333                                                                                                                                                                                                                                        | 571        | 27 |
| かんざし筋     | No.1, 2          | D10 | SD295A | 349                                                                                                                                                                                                                                        | 492        | 29 |

| 表-3 鋼板の材料試験結果 |      |                    |          |        |                                               |                                                       |           |                                                 |
|---------------|------|--------------------|----------|--------|-----------------------------------------------|-------------------------------------------------------|-----------|-------------------------------------------------|
| 使用箇所          |      | 使用<br>試験体          | 公称<br>厚さ | 材質     | 降伏点<br>の <sub>y</sub><br>(N/mm <sup>2</sup> ) | 引張強度<br><b>の</b> <sub>u</sub><br>(N/mm <sup>2</sup> ) | 伸び<br>(%) | 降伏ひずみ<br>を <sub>y</sub><br>(×10 <sup>-3</sup> ) |
|               | ウェブ  | No.1, 2, 3         | DI 6     | SM490A | 410                                           | 554                                                   | 24        | 2.00                                            |
|               |      | No.4, 5, 6         | FL-0     |        | 404                                           | 558                                                   | 24        | 1.97                                            |
| 梁             | フランジ | No.1, 2<br>No.3, 5 | PL-16    | SM490A | 351                                           | 524                                                   | 28        | 1.71                                            |
|               |      | No.4, 6            | PL-19    |        | 340                                           | 525                                                   | 27        | 1.66                                            |
| 支圧板           |      | No.1, 3, 5         | PL-6     | SS400  | 309                                           | 469                                                   | 28        | 1.51                                            |
| ふさぎ板          |      | No.2, 4, 6         | PL-3.2   | SS400  | 354                                           | 453                                                   | 36        | 1.73                                            |







(3) T 字形試験体 No.1 (No. 2)

図-2 試験体の形状および寸法

#### 表-4 コンクリートの材料試験結果

| 使用<br>試験体     | 圧縮強度<br>$\sigma_B$ | σ <sub>B</sub> 時ひずみ<br>ε <sub>co</sub> | ヤング係数<br>$E_c$<br>(kN/mm <sup>2</sup> ) | 割裂強度<br>$\sigma_t$ | 単位容積重量<br>$\rho$<br>$(kN/mm^3)$ |
|---------------|--------------------|----------------------------------------|-----------------------------------------|--------------------|---------------------------------|
| No.1, 2       | 47.9               | 2.16                                   | 34.2                                    | 3.63               | 23.1                            |
| No.3, 4, 5, 6 | 64.9               | 2.37                                   | 38.0                                    | 5.10               | 23.0                            |

### 2.2 実験方法

図-3に各架構形状における載荷装置を示す。

+字形およびト字形試験体は、柱に一定軸力を加えた 状態で押し引き型油圧ジャッキを用いて両梁鉄骨先端の 加力点の変位量を(+字形は逆対称に)制御して加力し た。載荷軸力をNとした時の軸力比 $\eta$ は、+字形試験体 では $\eta = N/(Fc \times 柱断面積)=0.2$ 、ト字形試験体では $\eta = 0.1$ とした。Fc は、柱コンクリートの目標圧縮強度 (=60N/mm<sup>2</sup>)の値を用いた。

T 字形試験体は、柱先端部の反曲点位置に押し引き型 油圧ジャッキを用いて水平方向に加力した。また、重り と滑車を用いて、柱軸力が生じないようにした。

載荷スケジュールを図-4に示す。目標層間変形角 R=5, 10, 20, 30, 40, 50 (×10<sup>-3</sup>)rad.において 2 サイクルずつの正 負交番繰り返し載荷を行った後、正加力方向へ R=100× 10<sup>-3</sup>rad.まで単調載荷とした。なお、試験体 No.1 (T字形、 せん断補強筋形式) は、R=50×10<sup>-3</sup>rad.の 2 サイクルを省 略し、R=100×10<sup>-3</sup>rad.まで単調載荷とした。実験での測 定項目を表-5 に示す。



| 架構形状 | 十・ト字形  | (No.3~No.6) | T 字形(No.1,No.2) |      |  |  |
|------|--------|-------------|-----------------|------|--|--|
| 補強形式 | せん断補   | ふさぎ板        | せん断補            | ふさぎ板 |  |  |
|      | 強筋形式   | 形式          | 強筋形式            | 形式   |  |  |
| 変位量  | 層間変形角、 | 、柱、梁、       | 層間変形角、柱、梁、      |      |  |  |
|      | 接合部の変  | 形量          | 接合部の変形量、柱主筋     |      |  |  |
|      |        |             | の抜け出し量          |      |  |  |
| ひずみ  | 柱主筋、柱  | せん断補強       | 柱主筋、柱せん断補強      |      |  |  |
|      | 筋、梁鉄骨  | フランジおよび     | 筋、梁鉄骨フランジおよび    |      |  |  |
|      | ウェフ゛   |             | ウェブ、定着部拘束筋およ    |      |  |  |
|      |        |             | びかんざし筋          |      |  |  |
|      | 支圧板、   | ふさぎ板        | 支圧板、            | ふさぎ板 |  |  |
|      | 接合部補   |             | 接合部補            |      |  |  |
|      | 強筋     |             | 強筋              |      |  |  |
| 荷重   | 梁せん断力、 | 、柱軸力        | 柱せん断力、          | 梁軸力  |  |  |





図-3 載荷装置

### 3. 実験結果

# 3.1 破壊状況

各試験体における実験終了後の最終破壊状況とふさぎ 板を外した柱梁接合部の損傷状況を写真-1に示す。

# (1) 十字形試験体 (No. 3, No. 4)

No.3 では柱曲げひび割れ発生後の R=8.5×10<sup>-3</sup>rad.時に 柱梁接合部に斜めひび割れが発生し、その後、柱材端部 の柱主筋に沿って進展した。No.4 では柱材端部に曲げひ び割れが多く生じたが、同ひび割れ幅は拡大せず、ふさ ぎ板に顕著な変形は見られなかった。実験後、ふさぎ板 を外して接合部内部の損傷を観察した結果、柱梁接合部 に斜めひび割れが生じていた。ただし、ふさぎ板の拘束 効果により、No.3 と比較してひび割れ幅は小さく、明ら かに損傷が少ない状況であった。

# (2) ト字形試験体 (No.5, No.6)

No.5 では柱曲げひび割れ発生前の R=5.0×10<sup>-3</sup>rad.時に 柱梁接合部に斜めひび割れが発生し、層間変形角の増大



### (3) T字形試験体 (No.1. No.2)

No.1 では柱曲げひび割れ発生後の R=6.9×10<sup>-3</sup>rad.時に 柱梁接合部に斜めひび割れが発生し、その後、柱材端部 の柱主筋に沿って進展した。No.2 ではふさぎ板の顕著な 変形は見られなかった。実験後、ふさぎ板を外して接合 部内部の損傷を観察した結果、柱梁接合部に柱主筋の抜 け出しに伴う扇状の膨らみが見られた。ただし、斜めひ び割れは見られず、柱材端部コンクリートに生じた剥落 の接合部内部への進展は見られなかった。









(1) 十字形試験体



(2) ト字形試験体



(3) T字形試験体 写真-1 最終破壊状況







#### 3.2 荷重-変形関係

せん断力と層間変形角の関係を図-5 に示す。Qg は梁 せん断力、Qc は柱せん断力、R は層間変形角を示し、限 界層間変形角 R80 は、耐力が最大耐力の 80%に低下した 時の層間変形角を示す。

# (1)十字形試験体 (No. 3, No. 4)

両試験体ともに、R=5.0~5.5×10<sup>-3</sup>rad.時に柱材端部に 曲げひび割れが発生した後、接合部内ウェブがせん断降 伏した。その後、せん断補強筋形式の No.3 は接合部のせ -60 -ん断補強筋の引張降伏が生じた後、ふさぎ板形式の No.4 はふさぎ板のせん断降伏が生じた後にそれぞれ最大耐力 に達した。最大耐力後は、No.3 では接合部斜めひび割れ、 No.4 では柱材端部コンクリートの剥落が進行して徐々に 耐力が低下した。R80 は、No.3 で 100×10<sup>-3</sup>rad.以上、No.4 で 47.2×10<sup>-3</sup>rad.であった。

#### (2) ト字形試験体 (No. 5, No. 6)

両試験体ともに、R=5.6~8.0×10<sup>-3</sup>rad.時に柱材端部に 曲げひび割れが発生し、まもなく梁フランジが引張降伏 した。その後、R=30~40×10<sup>-3</sup>rad.において梁材端ウェブ の局部座屈が生じた後に最大耐力に達した。最大耐力後 は、両試験体ともに梁鉄骨ウェブの局部座屈が進展して 徐々に耐力が低下した。ただし、No.6は、No.5と比較し て梁鉄骨の局部座屈の範囲が大きく(3.1参照)、耐力低 下が大きかった。一方、せん断補強筋形式の No.5 では、 梁フランジの引張降伏後、接合部内ウェブのせん断降伏 と接合部せん断補強筋の引張降伏が発生したが、ふさぎ 板形式の No.6 では、接合部内ウェブのせん断降伏および ふさぎ板のせん断降伏は発生しなかった。R80 は、せん 断補強筋形式の No.5 で 100×10<sup>-3</sup>rad.以上、ふさぎ板形式 の No.6 で 51.1×10<sup>-3</sup>rad.であった。いずれも紡錘形の履歴 性状を示した。なお、荷重-変形関係においても、No.5の 梁鉄骨の埋め込み長さによる影響は見られなかった。

# (3)T字形試験体(No. 1, No. 2)

両試験体ともに、R=1.6~1.7×10<sup>-3</sup>rad.時に柱頭部に曲 げひび割れが発生し、R=12.9~14.0×10<sup>-3</sup>rad.時に柱主筋 が引張降伏した。その後、両試験体とも接合部内ウェブ がせん断降伏して最大耐力に達した。最大耐力後、せん 断補強筋形式のNo.1では柱主筋の定着部破壊に伴って耐 力が急激に低下した。一方、ふさぎ板形式のNo.2では柱 端部におけるコンクリートのひび割れなどの進行に伴っ て徐々に耐力が低下した。R80 は、せん断補強筋形式の No.1 で 21.0×10<sup>-3</sup>rad.、ふさぎ板形式の No.2 で 47.0× 10<sup>-3</sup>rad.であった。 以上より、柱主筋の定着部破壊となった試験体 No.1 を 除いて、各試験体の R80 は 47.0×10<sup>-3</sup>rad.以上となり、十 分な変形性能を有していることがわかった。



【柱】 CFC:曲げひび割れ CCS:梁鉄骨フランジ直下の材端部コンクリ -トの圧壊 CTY:主筋の引張降伏 【梁】 BFTY:フランジの引張降伏 BWB:ウュブの局部座屈 【柱梁接合部】 SC:斜めひび割れ JWY:梁鉄骨ウュブのせん断降伏 PY:ふさぎ板のせん断降伏 HTY:せん断補強筋の引張降伏 RTY:定着部拘束筋の引張降伏

# 図-5 荷重-変形関係

#### 3.3 変形成分比の推移および破壊形式

梁、柱、柱梁接合部の各変形成分比の推移を図ー6に示 す。 $\theta$ ga/R、 $\gamma$ pa/R、 $\theta$ ca/R は、梁の部材角、柱梁接合 部のせん断変形角、柱の部材角をそれぞれ層間変形角 R で除した値である。ただし、T 字形試験体の柱変形成分 比は、柱主筋の抜け出しによる回転を除いた成分 $\theta$ coa/R と、柱主筋の抜け出しによる回転成分 $\theta$ sa/R に分けて示 した。

### (1)十字形試験体(No. 3, No. 4)

両試験体ともに、層間変形角の増大に伴い、梁の成分 θ ga/R が減少し、最大耐力後は接合部の成分γ pa/R が卓 越した。荷重-変形関係も併せて考慮すると、両試験体の 破壊形式は、梁曲げ降伏後の接合部せん断破壊型と考え られる。

# (2) ト字形試験体 (No. 5, No. 6)

両試験体ともに、梁の成分 θ ga/R が大部分を占めてお り、0.7~0.9 程度を保持して推移した。荷重-変形関係も 併せて考慮すると、両試験体の破壊形式は、梁曲げ破壊 型と考えられる。

# (3)T字形試験体(No. 1, No. 2)

せん断補強筋形式の No.1 では、層間変形角の増大に伴 い、柱自体の成分 θ coa/R および梁の成分 θ ga/R が減少し、 最大耐力付近で柱主筋の抜け出しによる成分 θ sa/R が急 激に増大した。ふさぎ板形式の No.2 では、最大耐力時ま では θ coa/R が 0.5 程度と卓越したが、その後徐々に減少 し、R=40~50×10<sup>-3</sup>rad.程度から θ sa/R が急激に増大した。 荷重-変形関係も併せて考慮すると、No.1 の破壊形式は、 柱曲げ降伏後の柱主筋定着破壊型、No.2 は、柱主筋の抜 け出しを伴う柱曲げ破壊型であったと考えられる。柱主 筋にSD490を用いた No.2 の定着部破壊が抑制されている のは、既往の文献<sup>20</sup>にもあるように、ふさぎ板の拘束効 果によるものと考えられる。

#### 4. 柱梁接合部のせん断設計

### 4.1 実験最大耐力と計算値耐力との関係

最大耐力の実験値と計算値との比較を表-6に示す。計 算値は、柱(曲げ)、梁(曲げ)、柱梁接合部(せん断) の各終局耐力計算値の最小値(表中網掛けした数値)を 用いた。なお、柱の曲げ終局耐力は「建築物の構造関係 技術基準解説書」<sup>3)</sup>の略算式、梁の曲げ終局耐力は全塑性 モーメント、柱梁接合部のせん断終局耐力は「鉄骨鉄筋 コンクリート構造計算規準・同解説」<sup>4)</sup>(以下、SRC規準 と称す。)の柱梁接合部のせん断終局パネルモーメントに 準拠した式(1)で算定した。



|       |                                                              | 接合部<br>補強形式  | 実験値                     |                         |                           | 計算値*              |                   |                   |                                                                 |
|-------|--------------------------------------------------------------|--------------|-------------------------|-------------------------|---------------------------|-------------------|-------------------|-------------------|-----------------------------------------------------------------|
| 試験体   | 架構<br>形状                                                     |              | 実験最<br><sub>exp</sub> ( | 大耐力<br>C <sub>max</sub> | 変形角<br>R                  | 柱曲げ<br>耐力時        | 梁曲げ<br>耐力時        | 接合部<br>せん断<br>耐力時 | <sub>exp</sub> Q <sub>max</sub> ∕ <sub>u</sub> Q <sub>cal</sub> |
|       |                                                              |              | $_{c}Q(kN)$             | $_{g}Q(kN)$             | ( × 10 <sup>-3</sup> rad) | $_{c}Q_{cal}(kN)$ | $_{g}Q_{cal}(kN)$ | $_{p}Q_{cal}(kN)$ |                                                                 |
| No.3  | 十个时                                                          | せん断<br>補強筋形式 | I                       | 207                     | 20.1                      | 387               | 205               | 186               | 1.11                                                            |
| No.4  | 1 - 112                                                      | ふさぎ板<br>形式   | I                       | 287                     | -20.1                     | 391               | 286               | 235               | 1.22                                                            |
| No.5  | トウジ                                                          | せん断<br>補強筋形式 | I                       | 272                     | 50.2                      | 589               | 204               | 305               | 1.33                                                            |
| No.6  | 下子形                                                          | ふさぎ板<br>形式   | I                       | 368                     | -40.1                     | 595               | 286               | 396               | 1.28                                                            |
| No.1  | T字形                                                          | せん断<br>補強筋形式 | 211                     | -                       | 18.0                      | 180               | 346               | 279               | 1.17                                                            |
| No.2  |                                                              | ふさぎ板<br>形式   | 281                     | -                       | 30.1                      | 223               | 346               | 352               | 1.26                                                            |
| *計質値) | 計算値は、実験に合わせて、試験はNa 2~Na 6は浄サイン版力、試験はNa 1なとびNa 2は社せん版力に換算している |              |                         |                         |                           |                   |                   |                   |                                                                 |

表-6 最大耐力の実験値と計算値の比較

それぞれの計算値は、実際の破壊形式と概ね一致して おり、実験値と良い対応を示した。ここで、接合部せん 断破壊型の十字形試験体を比較すると、せん断補強筋形 式の No.3 の方が計算値に対する余裕度が小さい。3.1 の 破壊状況によると、No.4 は、ふさぎ板による接合部内コ ンクリートの拘束効果でせん断耐力が増大していると考 えられ、せん断補強筋形式と比較して補強効果が大きい ためと考えられる。

#### 4.2 柱梁接合部のせん断終局耐力

試験体 No.3(せん断補強筋形式)の実験値が式(1)によ る計算値に対して余裕度が小さいことから、本構法の柱 梁接合部におけるせん断設計では、柱梁接合部の補強形 式に応じた補強効果の低減を考慮できる設計式として、 式(2)を満足することとした。

$${}_{js}M_U = \alpha \cdot \left\{ {}_cV_e \cdot \left( {}_jF_s \cdot {}_j \delta + {}_wp \cdot {}_w \sigma_y \right) + \frac{1.2 \cdot {}_sV \cdot {}_s \sigma_y}{\sqrt{3}} \right\}$$

$$\geq \alpha_s \cdot \frac{h'}{h} \cdot \left( {}_BM_{U1} + {}_BM_{U2} \right)$$
(2)

 $_BM_{U1,B}M_{U2}: 左右梁の全塑性モーメント$ h,h':層高および柱の内法高さ,



図-7 せん断終局耐力設計式の妥当性の検証

αは柱梁接合部の補強形式による低減係数であり、せ ん断補強筋形式は $\alpha = 0.8$ 、ふさぎ板形式は $\alpha = 1.0$ とした。

図-7は、本実験および既往の研究 5)~50)における十字 形、ト字形、T 字形試験体の実験結果について、実験の 最大耐力と式(2)による<sub>is</sub>M<sub>U</sub>の値を、それぞれ梁あるい は柱曲げ耐力計算値で基準化した関係を示す。図より、 横軸(せん断終局耐力計算値/梁あるいは柱曲げ耐力計 算値)の値が、1.0付近を境に接合部せん断破壊と梁ある いは柱曲げ破壊に分類されていることがわかる。よって、  $_{is}M_U$ を梁曲げ耐力に対して 1.1 倍以上 ( $\alpha_s \ge 1.1$ ) 確保 すれば、接合部せん断破壊を抑制できると考えられる。

### 5. まとめ

柱 RC 梁 S ハイブリッド構法の性能を確認するため、 構造実験および考察を行った結果、以下の知見を得た。

- せん断補強筋形式では柱梁接合部にせん断ひび割 れ等の損傷が生じるが、ふさぎ板形式ではふさぎ 板の拘束効果により柱梁接合部の損傷を大幅に抑 制できる。
- 本構法は、せん断補強筋形式、ふさぎ板形式とも に十分な変形性能を有する。
- 本構法による試験体の実験最大耐力は、既往の設 計式に基づく計算値と良い対応を示す。
- 4) 本実験結果および既往の研究結果により柱梁接合 部のせん断設計について検討し、本構法による柱 梁接合部がSRC規準に準拠したせん断終局耐力設 計式で評価できることを示した。

[謝 辞]

本構法の開発は、RCS ハイブリッド構法研究会(青木 あすなろ建設、淺沼組、奥村組、西武建設、大末建設、 東亜建設工業、西松建設、ハザマ、長谷エコーポレーシ ョンで構成)により行われました。開発に当たってご尽 力頂きました各社委員の皆様に謝意を表します。また、 本構法の開発に関して様々なご指導およびご教示を頂き ました財団法人日本建築総合試験所の益尾潔審議役・工 博、構造実験でご尽力頂きました足立将人主査・博士(工 学)および堂下航氏をはじめとする同試験所の皆様に謝 意を表します。

[参考文献]

- 日本建築学会:鉄筋コンクリート柱・鉄骨梁混合構 造の設計と施工、2001.
- 神野靖夫、富永博夫、村井義則、坂口昇、山野辺宏 治、野崎次男:鉄筋コンクリート柱と鉄骨梁で構成 される架構(RCSS 構法)の耐力及び変形(その 14 柱主筋の引き抜き試験)、日本建築学会学術講演梗概 集 構造II、pp.1189-1190、1990.
- 3) 国土交通省他:建築物の構造関係技術基準解説書、
   2007.
- 日本建築学会:鉄骨鉄筋コンクリート構造計算規 準・同解説、2001.
- 5) 坂口昇:鉄筋コンクリート柱と鉄骨梁で構成される 柱梁接合部パネルのせん断耐力、日本建築学会構造 系論文報告集 第428号、pp.69-78、1991.10.
- 6) 蘓鉄盛史、石田健吾、光成和昭:梁貫通ふさぎ板形

式 RCS 混合構造架構の構造性能に関する実験(その 1 実験概要および実験結果)、日本建築学会学術講 演梗概集 構造III、pp.1263-1264、1998.9.

- 7) 石田健吾、蘓鉄盛史、光成和昭:梁貫通ふさぎ板形 式 RCS 混合構造架構の構造性能に関する実験(その 2 実験結果の検討)、日本建築学会学術講演梗概集 構造Ⅲ、pp.1265-1266、1998.9.
- 8) 石田健吾、蘓鉄盛史、光成和昭:梁貫通ふさぎ板形 式RCS 混合構造架構の構造性能に関する実験(その 3 柱梁接合部を構成する鋼材の応力)、日本建築学 会学術講演梗概集 構造Ⅲ、pp.1025-1026、1999.9.
- 9) 長谷川隆、山内泰之、西山功、井崎征男:鉄筋コン クリート柱と鉄骨梁より成る混合構造(柱梁接合部 の弾塑性挙動)、日本建築学会学術講演梗概集 構造 II、pp.1325-1326、1987.10.
- 10) 本間優子、杉山靖、東端泰夫、藤村勝、持田哲雄、 毛井崇博:柱RC梁S接合部の力学性状(その1 予 備実験計画および破壊経過)、日本建築学会学術講演 梗概集 構造II、pp.1183-1184、1990.10.
- 毛井崇博、東端泰夫、杉山靖、持田哲雄、藤村勝、本間優子:柱RC梁S接合部の力学性状(その2 予備実験結果の検討)、日本建築学会学術講演梗概集構造II、pp.1185-1186、1990.10.
- 12) 村田義行、藤本純一、楊柳:柱RC梁Sからなる混 合構造物の架構実験(その1 十字形架構の実験概 要および破壊状況)、日本建築学会学術講演梗概集 構造II、pp.1669-1670、1994.9.
- 13) 藤本純一、村田義行、楊柳:柱RC梁Sからなる混 合構造物の架構実験(その2 十字形架構の実験結 果)、日本建築学会学術講演梗概集 構造Ⅱ、 pp.1671-1672、1994.9.
- 14) 村田義行:柱 RC 梁 S からなる混合構造接合部の支
   圧耐力、日本建築学会構造系論文報告集 第489号、
   pp.105-115、1996.11.
- 15) 岩渕一徳、吉松賢二、坂尾恵司、濱田真:柱RC梁 S混合構造の柱梁接合部に関する実験的研究(その1 実験概要とその結果)、日本建築学会学術講演梗概集 構造Ⅲ、pp.1015-1016、1997.9.
- 16) 吉松賢二、坂尾恵司、濱田真、岩渕一徳:柱 RC 梁
   S 混合構造の柱梁接合部に関する実験的研究(その2
   結果の検討)、日本建築学会学術講演梗概集 構造Ⅲ、
   pp.1017-1018、1997.9.
- 17) 渡邉信也、吉松賢二、濱田真、佐藤玲圭、岩渕一徳: 柱 RC 梁 S 混合構造の柱梁接合部に関する実験的研

究(その3 実験概要とその結果)、日本建築学会学術講演梗概集 構造Ⅲ、pp.1257-1258、1998.9.

- 18) 岩渕一徳、吉松賢二、濱田真、佐藤玲圭、渡邉信也: 柱 RC 梁 S 混合構造の柱梁接合部に関する実験的研究(その4 実験結果および検討)、日本建築学会学 術講演梗概集 構造Ⅲ、pp.1259-1260、1998.9.
- 19) 佐藤玲圭、吉松賢二、濱田真、渡邉信也、岩渕一徳: 柱 RC 梁 S 混合構造の柱梁接合部に関する実験的研究(その5 接合部終局せん断耐力の検討)、日本建築学会学術講演梗概集 構造Ⅲ、pp.1261-1262、 1998.9.
- 20) 福本昇、石原誠一郎:バンドプレートで補強された 柱 RC・梁 S 構造の柱梁接合部に関する実験研究、日 本建築学会学術講演梗概集 構造Ⅲ、pp.955-956、 1995.8.
- 21) 飯塚正義、黒田洋子:梁貫通型柱 RC梁S構造十字型接合部の実験的研究(その1 工法の概要と梁曲 げ降伏先行型試験体による実験)、日本建築学会学術 講演梗概集 構造Ⅲ、pp.1235-1236、2000.9.
- 22) 黒田洋子、飯塚正義:梁貫通型柱 RC 梁 S 構造十字 型接合部の実験的研究(その 2 接合部せん断破壊 先行型試験体による実験と接合部せん断耐力式の評 価)、日本建築学会学術講演梗概集 構造Ⅲ、 pp.1237-1238、2000.9.
- 23) 杉本裕志、富永博夫、村井義則、坂口昇、斎藤秀人、 野崎次男:鉄筋コンクリート柱と鉄骨梁で構成され る架構(RCSS 構法)の耐力及び変形性能(その11 1/2 モデル十字形接合部せん断実験)、日本建築学会 学術講演梗概集 構造Ⅱ、pp.1577-1578、1989.10.
- 24) 坂口昇、富永博夫、村井義則、黒瀬行信、関洋一、 山野辺宏治:鉄筋コンクリート柱と鉄骨梁で構成される架構(RCSS構法)の耐力及び変形性能(その 12 十字形接合部のせん断耐力)、日本建築学会学術 講演梗概集 構造II、pp.1579-1580、1989.10.
- 25) 金本清臣、中西啓二、山野辺宏治、渡辺泰志:高強 度材料を用いた鉄筋コンクリート柱と鉄骨梁で構成 される架構(NewRCSS構法)の開発(その1 実験 計画および実験結果)、日本建築学会学術講演梗概集 構造Ⅲ、pp.1103-1104、2005.9.
- 26) 山野辺宏治、中西啓二、金本清臣、渡辺泰志:高強 度材料を用いた鉄筋コンクリート柱と鉄骨梁で構成 される架構(NewRCSS構法)の開発(その2 接合 部耐力式の提案および剛性評価)、日本建築学会学術 講演梗概集 構造Ⅲ、pp.1105-1106、2005.9.

- 27) 秦雅史、安倍勇、早川邦夫、細矢博、安井健治、舟山勇司:柱 RC 梁 S から成る構造物の部分架構実験 (その 1)、日本建築学会学術講演梗概集 構造Ⅱ、 pp.1615-1616、1991.9.
- 28) 舟山勇司、安倍勇、早川邦夫、秦雅史、細矢博、安 井健治:柱 RC 梁 S から成る構造物の部分架構実験 (その 2)、日本建築学会学術講演梗概集 構造Ⅱ、 pp.1617-1618、1991.9.
- 29) 中江晃彦、早川邦夫、細矢博、舟山勇司、平野晋:
   柱RC梁Sから成る構造物の部分架構実験(その5)、
   日本建築学会学術講演梗概集 構造 II、pp.1663-1664、
   1994.9.
- 30) 谷垣正治、岩田吉弘、野路利幸、山本一朗、小坂英 之、小田稔:柱 RC 梁 S 構造の接合部性能に関する 研究(その1 実験概要)、日本建築学会学術講演梗 概集 構造II、pp.1657-1658、1994.9.
- 31) 小田稔、遠藤克彦、山中久幸、谷垣正治、小坂英之、 河崎善之:柱 RC 梁 S 構造の接合部性能に関する研 究(その2 接合部破壊形式の分類)、日本建築学会 学術講演梗概集 構造 II、pp.1659-1660、1994.9.
- 32) 小林知巳、初瀬隆司、山中久幸、谷垣正治、小坂英 之、小田稔:柱 RC 梁 S 構造の接合部性能に関する 研究(その3 最大耐力)、日本建築学会学術講演梗 概集 構造II、pp.1661-1662、1994.9.
- 33) 森貴久、齋藤啓一: RCS 構造におけるふさぎ板形式 柱梁接合部のせん断耐力に関する実験、日本建築学 会学術講演梗概集 構造III、pp.1099-1100、2006.9.
- 34) 吉松賢二、坂尾恵司、濱田真、河口俊郎:高強度コ ンクリートを用いた柱 RC 梁 S 混合構造の接合部に 関する実験的研究(その 2 梁貫通ふさぎ板形式接 合部)、日本建築学会学術講演梗概集 構造Ⅲ、 pp.1053-1054、1996.9.
- 35) 小澤潤治、岩倉知行、山本俊彦、須田充司、斉藤駿
   三: RC柱・S造はりで構成される合成架構に関する
   研究(その1 囲み板で補強した柱はり接合部の実験)、日本建築学会学術講演梗概集 構造Ⅱ、
   pp.1897-1898、1992.8.
- 36) 小澤潤治、公塚正行、青木雅秀、岩倉知行、吉田徳 雄: RC柱・S造はりで構成される合成架構に関する 研究(その5 柱はり断面寸法比が異なる場合)、日 本建築学会学術講演梗概集 構造Ⅲ、pp.1079-1080、 1996.9.
- 37) 鴻池組・新井組 RCS 接合構法―柱梁接合部をふさ ぎ板で覆った梁貫通型 RC 柱 S 梁接合部構法―、財

団法人日本建築総合試験所 建築技術性能証明評価 概要報告書、2008.5.

- 38) 堀伸輔、五十嵐治人、荒金直樹、足立将人:柱 RC
   梁 S 混合構造架構の構造性能(その1) 十字形接合
   部実験の概要)、日本建築学会学術講演梗概集 構造
   III、pp.1109-1110、2009.8.
- 39) 成瀬忠、伊藤仁、荒金直樹、足立将人:柱 RC 梁 S 混合構造架構の構造性能(その3 柱梁接合部せん 断耐力評価)、日本建築学会学術講演梗概集 構造Ⅲ、 pp.1113-1114、2009.8.
- 40) 紅谷信行、金洸演、野口博:ハイブリッド構造に関する日米共同構造実験研究(RCS-6) —外柱 RC・梁
   S 接合部の実験概要—、日本建築学会学術講演梗概
   集 構造Ⅲ、pp.891-892、1995.8.
- 41) 豊島学、小澤潤治、山本俊彦、磯雅人: RC 柱・S
   造はりで構成される合成架構に関する研究(その3)
   ト型接合部の実験)、日本建築学会学術講演梗概集
   構造Ⅲ、pp.943-944、1995.8.
- 42) 野口聡、早川邦夫、細矢博、中江晃彦、河野政典:
   柱RC梁Sから成る構造物の部分架構実験(その7)、
   日本建築学会学術講演梗概集 構造Ⅲ、pp.905-906、
   1995.8.
- 43) 高見信嗣、増田安彦、吉岡研三:柱 RC・梁 S 混合 構造の合理的設計法に関する研究(その1) ―梁貫 通形式の接合部実験―、大林組技術研究所報 No.51、 pp.49-54、1995.
- 44) 楊柳、村田義行、藤本純一:柱RC梁Sからなる混
   合構造物の架構実験(その3 T字形架構実験)、日
   本建築学会学術講演梗概集 構造Ⅱ、pp.1673-1674、
   1994.9.
- 45) 勝倉靖、成原弘之、飯島昭治、佐藤龍生:簡易な仕口による柱 RC 梁 S 複合構造の実験(その3 最上階柱梁接合部の実験)、日本建築学会学術講演梗概集構造II、pp.1847-1848、1993.9.
- 46) 磯雅人、小澤潤治、山本俊彦、豊島学: RC 柱・S 造はりで構成される合成架構に関する研究(その 4 T型・L型接合部の実験)、日本建築学会学術講演梗 概集 構造Ⅲ、pp.945-946、1995.8.
- 47) 中江晃彦、安倍勇、早川邦夫、細矢博、平野晋、舟 山勇司:柱 RC 梁 S から成る構造物の部分架構実験 (その 3)、日本建築学会学術講演梗概集 構造Ⅱ、 pp.1879-1880、1992.8.
- 48) 早川邦夫、細矢博、中江晃彦、河野政典、野口聡: 柱RC梁Sから成る構造物の部分架構実験(その6)、

日本建築学会学術講演梗概集 構造Ⅲ、pp.903-904、 1995.8.

- 49) 富永博夫、村井義則、高瀬雄一、坂口昇、小川雄一 郎、友永久雄:鉄筋コンクリート柱と鉄骨梁で構成 される架構(RCSS 構法)の耐力及び変形性能(その1 構法の概要と実験計画)、日本建築学会学術講 演梗概集 構造II、pp.1427-1428、1986.8.
- 50) 塩崎裕也、堀信輔、荒金直樹、足立将人:柱RC梁 S混合構造架構の構造性能(その2 T字形接合部実 験の概要)、日本建築学会学術講演梗概集 構造Ⅲ、 pp.1111-1112、2009.8.